Recent Advances in Transition‐Metal‐Based Catalytic Material for Room‐Temperature Sodium–Sulfur Batteries

Room‐temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next‐generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the noto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01, Vol.34 (5), p.n/a
Hauptverfasser: Liu, Yuping, Bettels, Frederik, Lin, Zhihua, Li, Zhenhu, Shao, Yaxin, Ding, Fei, Liu, Shuangyi, Zhang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Advanced functional materials
container_volume 34
creator Liu, Yuping
Bettels, Frederik
Lin, Zhihua
Li, Zhenhu
Shao, Yaxin
Ding, Fei
Liu, Shuangyi
Zhang, Lin
description Room‐temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next‐generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the notorious shuttle effect of soluble sodium polysulfides (NaPSs) and sluggish reaction kinetics, which result in fast performance loss. To address this issue, recent studies have reported impressive achievements of transition metal nanoparticles/single atoms/cluster/compounds (TM)‐based host materials with strong adsorption and catalyzation to NaPSs. These materials can significantly improve the electrochemical performance of RT Na–S batteries. In this review, the recent progress on TM‐based host materials for RT Na–S batteries, including iron (Fe)‐, cobalt (Co)‐, nickel (Ni)‐, molybdenum (Mo)‐, titanium (Ti)‐, vanadium (V)‐, manganese (Mn)‐, and other TM‐based materials are summarized. The design, fabrication, and properties of these host materials are comprehensively summarized and systematically analyzed the underlying chemical inhibition and electrocatalysis mechanism between NaPSs and TM‐based catalytic materials. At last, the challenges and prospects for designing efficient TM‐based catalytic materials for high‐performance RT Na–S batteries are discussed. Transition‐metal‐based material is one of the most promising catalysts for room‐temperature sodium–sulfur (RTNa–S) batteries. The critical bottlenecks and future perspectives of these materials are systematically and comprehensively summarized in this review, aiming to deepen the fundamental understanding of the sulfur mechanism and offer guiding suggestions to boost their applications.
doi_str_mv 10.1002/adfm.202302626
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3576-28aa93d574847874e9315ac6e6ff1bf3c1b5672c3ce9471209e618a46091f6883</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1wOuU-cnmcks22pVaBHaCu7CdHIHUpJMO5Mo3fkIgm_okzilUpeuzj2X79wLJ4quCR4QjOmtKkw9oJgyTDnlJ1GPcMLj4LLT40xez6ML79cYEyFY0ou2c9DQtGhYvKlGg0dlg5ZONb5sS9t8f3zOoFVV0JHyUKCxCm7XlhrNVAuuVBUy1qG5tXVgllBvwKm2c4AWtii7sPxadJXpHBqpdh8AfxmdGVV5uPrVfvQyuV-OH-Pp88PTeDiNNUsFj2mmlGRFKpIsEZlIQDKSKs2BG0NWhmmySrmgmmmQiSAUS-AkUwnHkhieZawf3RzubpzdduDbfG0714SXOZVEpkxwzAM1OFDaWe8dmHzjylq5XU5wvq8139eaH2sNAXkIvJcV7P6h8-HdZPaX_QHqFIBF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537606</pqid></control><display><type>article</type><title>Recent Advances in Transition‐Metal‐Based Catalytic Material for Room‐Temperature Sodium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Yuping ; Bettels, Frederik ; Lin, Zhihua ; Li, Zhenhu ; Shao, Yaxin ; Ding, Fei ; Liu, Shuangyi ; Zhang, Lin</creator><creatorcontrib>Liu, Yuping ; Bettels, Frederik ; Lin, Zhihua ; Li, Zhenhu ; Shao, Yaxin ; Ding, Fei ; Liu, Shuangyi ; Zhang, Lin</creatorcontrib><description>Room‐temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next‐generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the notorious shuttle effect of soluble sodium polysulfides (NaPSs) and sluggish reaction kinetics, which result in fast performance loss. To address this issue, recent studies have reported impressive achievements of transition metal nanoparticles/single atoms/cluster/compounds (TM)‐based host materials with strong adsorption and catalyzation to NaPSs. These materials can significantly improve the electrochemical performance of RT Na–S batteries. In this review, the recent progress on TM‐based host materials for RT Na–S batteries, including iron (Fe)‐, cobalt (Co)‐, nickel (Ni)‐, molybdenum (Mo)‐, titanium (Ti)‐, vanadium (V)‐, manganese (Mn)‐, and other TM‐based materials are summarized. The design, fabrication, and properties of these host materials are comprehensively summarized and systematically analyzed the underlying chemical inhibition and electrocatalysis mechanism between NaPSs and TM‐based catalytic materials. At last, the challenges and prospects for designing efficient TM‐based catalytic materials for high‐performance RT Na–S batteries are discussed. Transition‐metal‐based material is one of the most promising catalysts for room‐temperature sodium–sulfur (RTNa–S) batteries. The critical bottlenecks and future perspectives of these materials are systematically and comprehensively summarized in this review, aiming to deepen the fundamental understanding of the sulfur mechanism and offer guiding suggestions to boost their applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202302626</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>catalytic materials ; Cobalt ; Electrochemical analysis ; Energy storage ; Iron ; Manganese ; Molybdenum ; Reaction kinetics ; room‐temperature sodium–sulfur batteries ; shuttle effects ; sluggish kinetics ; Sodium ; Storage systems ; Sulfur ; Titanium ; transition metal nanoparticles/compounds ; Transition metals ; Vanadium</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (5), p.n/a</ispartof><rights>2023 The Authors. Advanced Functional Materials published by Wiley‐VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3576-28aa93d574847874e9315ac6e6ff1bf3c1b5672c3ce9471209e618a46091f6883</citedby><cites>FETCH-LOGICAL-c3576-28aa93d574847874e9315ac6e6ff1bf3c1b5672c3ce9471209e618a46091f6883</cites><orcidid>0000-0002-3162-9640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202302626$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202302626$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Liu, Yuping</creatorcontrib><creatorcontrib>Bettels, Frederik</creatorcontrib><creatorcontrib>Lin, Zhihua</creatorcontrib><creatorcontrib>Li, Zhenhu</creatorcontrib><creatorcontrib>Shao, Yaxin</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Liu, Shuangyi</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><title>Recent Advances in Transition‐Metal‐Based Catalytic Material for Room‐Temperature Sodium–Sulfur Batteries</title><title>Advanced functional materials</title><description>Room‐temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next‐generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the notorious shuttle effect of soluble sodium polysulfides (NaPSs) and sluggish reaction kinetics, which result in fast performance loss. To address this issue, recent studies have reported impressive achievements of transition metal nanoparticles/single atoms/cluster/compounds (TM)‐based host materials with strong adsorption and catalyzation to NaPSs. These materials can significantly improve the electrochemical performance of RT Na–S batteries. In this review, the recent progress on TM‐based host materials for RT Na–S batteries, including iron (Fe)‐, cobalt (Co)‐, nickel (Ni)‐, molybdenum (Mo)‐, titanium (Ti)‐, vanadium (V)‐, manganese (Mn)‐, and other TM‐based materials are summarized. The design, fabrication, and properties of these host materials are comprehensively summarized and systematically analyzed the underlying chemical inhibition and electrocatalysis mechanism between NaPSs and TM‐based catalytic materials. At last, the challenges and prospects for designing efficient TM‐based catalytic materials for high‐performance RT Na–S batteries are discussed. Transition‐metal‐based material is one of the most promising catalysts for room‐temperature sodium–sulfur (RTNa–S) batteries. The critical bottlenecks and future perspectives of these materials are systematically and comprehensively summarized in this review, aiming to deepen the fundamental understanding of the sulfur mechanism and offer guiding suggestions to boost their applications.</description><subject>catalytic materials</subject><subject>Cobalt</subject><subject>Electrochemical analysis</subject><subject>Energy storage</subject><subject>Iron</subject><subject>Manganese</subject><subject>Molybdenum</subject><subject>Reaction kinetics</subject><subject>room‐temperature sodium–sulfur batteries</subject><subject>shuttle effects</subject><subject>sluggish kinetics</subject><subject>Sodium</subject><subject>Storage systems</subject><subject>Sulfur</subject><subject>Titanium</subject><subject>transition metal nanoparticles/compounds</subject><subject>Transition metals</subject><subject>Vanadium</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1Kw0AUhYMoWKtb1wOuU-cnmcks22pVaBHaCu7CdHIHUpJMO5Mo3fkIgm_okzilUpeuzj2X79wLJ4quCR4QjOmtKkw9oJgyTDnlJ1GPcMLj4LLT40xez6ML79cYEyFY0ou2c9DQtGhYvKlGg0dlg5ZONb5sS9t8f3zOoFVV0JHyUKCxCm7XlhrNVAuuVBUy1qG5tXVgllBvwKm2c4AWtii7sPxadJXpHBqpdh8AfxmdGVV5uPrVfvQyuV-OH-Pp88PTeDiNNUsFj2mmlGRFKpIsEZlIQDKSKs2BG0NWhmmySrmgmmmQiSAUS-AkUwnHkhieZawf3RzubpzdduDbfG0714SXOZVEpkxwzAM1OFDaWe8dmHzjylq5XU5wvq8139eaH2sNAXkIvJcV7P6h8-HdZPaX_QHqFIBF</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Liu, Yuping</creator><creator>Bettels, Frederik</creator><creator>Lin, Zhihua</creator><creator>Li, Zhenhu</creator><creator>Shao, Yaxin</creator><creator>Ding, Fei</creator><creator>Liu, Shuangyi</creator><creator>Zhang, Lin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3162-9640</orcidid></search><sort><creationdate>20240101</creationdate><title>Recent Advances in Transition‐Metal‐Based Catalytic Material for Room‐Temperature Sodium–Sulfur Batteries</title><author>Liu, Yuping ; Bettels, Frederik ; Lin, Zhihua ; Li, Zhenhu ; Shao, Yaxin ; Ding, Fei ; Liu, Shuangyi ; Zhang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3576-28aa93d574847874e9315ac6e6ff1bf3c1b5672c3ce9471209e618a46091f6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>catalytic materials</topic><topic>Cobalt</topic><topic>Electrochemical analysis</topic><topic>Energy storage</topic><topic>Iron</topic><topic>Manganese</topic><topic>Molybdenum</topic><topic>Reaction kinetics</topic><topic>room‐temperature sodium–sulfur batteries</topic><topic>shuttle effects</topic><topic>sluggish kinetics</topic><topic>Sodium</topic><topic>Storage systems</topic><topic>Sulfur</topic><topic>Titanium</topic><topic>transition metal nanoparticles/compounds</topic><topic>Transition metals</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuping</creatorcontrib><creatorcontrib>Bettels, Frederik</creatorcontrib><creatorcontrib>Lin, Zhihua</creatorcontrib><creatorcontrib>Li, Zhenhu</creatorcontrib><creatorcontrib>Shao, Yaxin</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Liu, Shuangyi</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuping</au><au>Bettels, Frederik</au><au>Lin, Zhihua</au><au>Li, Zhenhu</au><au>Shao, Yaxin</au><au>Ding, Fei</au><au>Liu, Shuangyi</au><au>Zhang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Transition‐Metal‐Based Catalytic Material for Room‐Temperature Sodium–Sulfur Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Room‐temperature sodium–sulfur (RT Na–S) batteries have emerged as a promising candidate for next‐generation scalable energy storage systems, due to their high theoretical energy density, low cost, and natural abundance. However, the practical applications of these batteries are hindered by the notorious shuttle effect of soluble sodium polysulfides (NaPSs) and sluggish reaction kinetics, which result in fast performance loss. To address this issue, recent studies have reported impressive achievements of transition metal nanoparticles/single atoms/cluster/compounds (TM)‐based host materials with strong adsorption and catalyzation to NaPSs. These materials can significantly improve the electrochemical performance of RT Na–S batteries. In this review, the recent progress on TM‐based host materials for RT Na–S batteries, including iron (Fe)‐, cobalt (Co)‐, nickel (Ni)‐, molybdenum (Mo)‐, titanium (Ti)‐, vanadium (V)‐, manganese (Mn)‐, and other TM‐based materials are summarized. The design, fabrication, and properties of these host materials are comprehensively summarized and systematically analyzed the underlying chemical inhibition and electrocatalysis mechanism between NaPSs and TM‐based catalytic materials. At last, the challenges and prospects for designing efficient TM‐based catalytic materials for high‐performance RT Na–S batteries are discussed. Transition‐metal‐based material is one of the most promising catalysts for room‐temperature sodium–sulfur (RTNa–S) batteries. The critical bottlenecks and future perspectives of these materials are systematically and comprehensively summarized in this review, aiming to deepen the fundamental understanding of the sulfur mechanism and offer guiding suggestions to boost their applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202302626</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3162-9640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01, Vol.34 (5), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2919537606
source Wiley Online Library Journals Frontfile Complete
subjects catalytic materials
Cobalt
Electrochemical analysis
Energy storage
Iron
Manganese
Molybdenum
Reaction kinetics
room‐temperature sodium–sulfur batteries
shuttle effects
sluggish kinetics
Sodium
Storage systems
Sulfur
Titanium
transition metal nanoparticles/compounds
Transition metals
Vanadium
title Recent Advances in Transition‐Metal‐Based Catalytic Material for Room‐Temperature Sodium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Transition%E2%80%90Metal%E2%80%90Based%20Catalytic%20Material%20for%20Room%E2%80%90Temperature%20Sodium%E2%80%93Sulfur%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Liu,%20Yuping&rft.date=2024-01-01&rft.volume=34&rft.issue=5&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202302626&rft_dat=%3Cproquest_cross%3E2919537606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919537606&rft_id=info:pmid/&rfr_iscdi=true