Singular solutions of the nonlocal nonlinear Schrödinger equation
The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of n -fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold s...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2022-10, Vol.137 (10), p.1151, Article 1151 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 1151 |
container_title | European physical journal plus |
container_volume | 137 |
creator | Lin, Bingwen |
description | The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of
n
-fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations. |
doi_str_mv | 10.1140/epjp/s13360-022-03327-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EElXpGYjE2tRvx0uoeEmVWBTWlpPYNFWIUztRxcW4ABfDaZBgx2xmFv83o_kAuMToGmOGlrbbdcuIKRUIIkIgopRIeDgBM4IVgpwxdvpnPgeLGHcoFVOYKTYDt5u6fRsaE7Lom6GvfRsz77J-a7PWt40vTXMc6tamzKbchq_PKiE2ZHY_mBG4AGfONNEufvocvN7fvawe4fr54Wl1s4YlpayH1hFOqJO5JIpYiW0pCiwYF1xg4SpmsSEiR5yTikubC0mcK6qclRUxThWMzsHVtLcLfj_Y2OudH0KbTmqisOJUIoJTSk6pMvgYg3W6C_W7CR8aIz0606MzPTnTyZk-OtOHROYTGRMxfvi7_z_0G8PFdA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537021</pqid></control><display><type>article</type><title>Singular solutions of the nonlocal nonlinear Schrödinger equation</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Lin, Bingwen</creator><creatorcontrib>Lin, Bingwen</creatorcontrib><description>The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of
n
-fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03327-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvectors ; Gravitational waves ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Schrodinger equation ; Spacetime ; Theoretical</subject><ispartof>European physical journal plus, 2022-10, Vol.137 (10), p.1151, Article 1151</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</citedby><cites>FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</cites><orcidid>0000-0002-8528-7535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03327-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919537021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Lin, Bingwen</creatorcontrib><title>Singular solutions of the nonlocal nonlinear Schrödinger equation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of
n
-fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvectors</subject><subject>Gravitational waves</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtOwzAQhi0EElXpGYjE2tRvx0uoeEmVWBTWlpPYNFWIUztRxcW4ABfDaZBgx2xmFv83o_kAuMToGmOGlrbbdcuIKRUIIkIgopRIeDgBM4IVgpwxdvpnPgeLGHcoFVOYKTYDt5u6fRsaE7Lom6GvfRsz77J-a7PWt40vTXMc6tamzKbchq_PKiE2ZHY_mBG4AGfONNEufvocvN7fvawe4fr54Wl1s4YlpayH1hFOqJO5JIpYiW0pCiwYF1xg4SpmsSEiR5yTikubC0mcK6qclRUxThWMzsHVtLcLfj_Y2OudH0KbTmqisOJUIoJTSk6pMvgYg3W6C_W7CR8aIz0606MzPTnTyZk-OtOHROYTGRMxfvi7_z_0G8PFdA8</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Lin, Bingwen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8528-7535</orcidid></search><sort><creationdate>20221019</creationdate><title>Singular solutions of the nonlocal nonlinear Schrödinger equation</title><author>Lin, Bingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvectors</topic><topic>Gravitational waves</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Bingwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Bingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular solutions of the nonlocal nonlinear Schrödinger equation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-10-19</date><risdate>2022</risdate><volume>137</volume><issue>10</issue><spage>1151</spage><pages>1151-</pages><artnum>1151</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of
n
-fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03327-w</doi><orcidid>https://orcid.org/0000-0002-8528-7535</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2022-10, Vol.137 (10), p.1151, Article 1151 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919537021 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applied and Technical Physics Atomic Complex Systems Condensed Matter Physics Eigenvectors Gravitational waves Mathematical analysis Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Regular Article Schrodinger equation Spacetime Theoretical |
title | Singular solutions of the nonlocal nonlinear Schrödinger equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20solutions%20of%20the%20nonlocal%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Lin,%20Bingwen&rft.date=2022-10-19&rft.volume=137&rft.issue=10&rft.spage=1151&rft.pages=1151-&rft.artnum=1151&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03327-w&rft_dat=%3Cproquest_cross%3E2919537021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919537021&rft_id=info:pmid/&rfr_iscdi=true |