Singular solutions of the nonlocal nonlinear Schrödinger equation

The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of n -fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2022-10, Vol.137 (10), p.1151, Article 1151
1. Verfasser: Lin, Bingwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1151
container_title European physical journal plus
container_volume 137
creator Lin, Bingwen
description The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of n -fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.
doi_str_mv 10.1140/epjp/s13360-022-03327-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919537021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919537021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</originalsourceid><addsrcrecordid>eNqFkEtOwzAQhi0EElXpGYjE2tRvx0uoeEmVWBTWlpPYNFWIUztRxcW4ABfDaZBgx2xmFv83o_kAuMToGmOGlrbbdcuIKRUIIkIgopRIeDgBM4IVgpwxdvpnPgeLGHcoFVOYKTYDt5u6fRsaE7Lom6GvfRsz77J-a7PWt40vTXMc6tamzKbchq_PKiE2ZHY_mBG4AGfONNEufvocvN7fvawe4fr54Wl1s4YlpayH1hFOqJO5JIpYiW0pCiwYF1xg4SpmsSEiR5yTikubC0mcK6qclRUxThWMzsHVtLcLfj_Y2OudH0KbTmqisOJUIoJTSk6pMvgYg3W6C_W7CR8aIz0606MzPTnTyZk-OtOHROYTGRMxfvi7_z_0G8PFdA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919537021</pqid></control><display><type>article</type><title>Singular solutions of the nonlocal nonlinear Schrödinger equation</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Lin, Bingwen</creator><creatorcontrib>Lin, Bingwen</creatorcontrib><description>The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of n -fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03327-w</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvectors ; Gravitational waves ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Schrodinger equation ; Spacetime ; Theoretical</subject><ispartof>European physical journal plus, 2022-10, Vol.137 (10), p.1151, Article 1151</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</citedby><cites>FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</cites><orcidid>0000-0002-8528-7535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03327-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919537021?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Lin, Bingwen</creatorcontrib><title>Singular solutions of the nonlocal nonlinear Schrödinger equation</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of n -fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvectors</subject><subject>Gravitational waves</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Schrodinger equation</subject><subject>Spacetime</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtOwzAQhi0EElXpGYjE2tRvx0uoeEmVWBTWlpPYNFWIUztRxcW4ABfDaZBgx2xmFv83o_kAuMToGmOGlrbbdcuIKRUIIkIgopRIeDgBM4IVgpwxdvpnPgeLGHcoFVOYKTYDt5u6fRsaE7Lom6GvfRsz77J-a7PWt40vTXMc6tamzKbchq_PKiE2ZHY_mBG4AGfONNEufvocvN7fvawe4fr54Wl1s4YlpayH1hFOqJO5JIpYiW0pCiwYF1xg4SpmsSEiR5yTikubC0mcK6qclRUxThWMzsHVtLcLfj_Y2OudH0KbTmqisOJUIoJTSk6pMvgYg3W6C_W7CR8aIz0606MzPTnTyZk-OtOHROYTGRMxfvi7_z_0G8PFdA8</recordid><startdate>20221019</startdate><enddate>20221019</enddate><creator>Lin, Bingwen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8528-7535</orcidid></search><sort><creationdate>20221019</creationdate><title>Singular solutions of the nonlocal nonlinear Schrödinger equation</title><author>Lin, Bingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ef2523f787292e71ec6b164565616fd4e1a2680552d57e8672ffbd84cd2af9b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvectors</topic><topic>Gravitational waves</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Schrodinger equation</topic><topic>Spacetime</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Bingwen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Bingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singular solutions of the nonlocal nonlinear Schrödinger equation</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-10-19</date><risdate>2022</risdate><volume>137</volume><issue>10</issue><spage>1151</spage><pages>1151-</pages><artnum>1151</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The author considers Darboux transformation of three nonlocal NLS equations and proper reduction conditions for the eigenfunctions. The formulae of n -fold solutions are represented by the ratio of determinants. According to the formulae, the author obtains explicit expressions of one- and twofold solutions of these nonlocal NLS equations, which are singular and have interesting structures. These types of solutions are new for these nonlocal NLS equations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03327-w</doi><orcidid>https://orcid.org/0000-0002-8528-7535</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-10, Vol.137 (10), p.1151, Article 1151
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919537021
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Eigenvectors
Gravitational waves
Mathematical analysis
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Regular Article
Schrodinger equation
Spacetime
Theoretical
title Singular solutions of the nonlocal nonlinear Schrödinger equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A23%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singular%20solutions%20of%20the%20nonlocal%20nonlinear%20Schr%C3%B6dinger%20equation&rft.jtitle=European%20physical%20journal%20plus&rft.au=Lin,%20Bingwen&rft.date=2022-10-19&rft.volume=137&rft.issue=10&rft.spage=1151&rft.pages=1151-&rft.artnum=1151&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03327-w&rft_dat=%3Cproquest_cross%3E2919537021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919537021&rft_id=info:pmid/&rfr_iscdi=true