Mathematical Evaluation of a-Si:H Film Formation in rf-PECVD Systems
Radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) is an efficient technique for preparing hydrogenated amorphous silicon (a-Si:H) layers used in thin film silicon solar cells. The most important parameters in a PECVD system are the chamber pressure, substrate temperature, partial...
Gespeichert in:
Veröffentlicht in: | SILICON 2020-03, Vol.12 (3), p.723-734 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 734 |
---|---|
container_issue | 3 |
container_start_page | 723 |
container_title | SILICON |
container_volume | 12 |
creator | Ganji, Jabbar Kosarian, Abdolnabi Kaabi, Hooman |
description | Radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) is an efficient technique for preparing hydrogenated amorphous silicon (a-Si:H) layers used in thin film silicon solar cells. The most important parameters in a PECVD system are the chamber pressure, substrate temperature, partial gas flow, plasma power, electrode spacing, and deposition time, by which the physical and electrical parameters of the deposited layers, such as phase, quality, thickness, doping concentration, energy gap, defect density, and mobility can be controlled. Moreover, some of the film parameters are indirectly related to the others. As a result, it is always difficult to describe the relations between the deposition parameters and the specifications of the deposited layer in closed-form equations, therefore, prediction of the properties of the deposited films remains an issue. In addition, the helpful facilities for in-situ monitoring of the film under deposition are very limited. In this research, based on a broad experimental data reported in the literature, it has been found that in many cases the performance of a PECVD system can be described in equation or graph forms, and effective estimations may be established for prediction of its performance. A flowchart is also presented to explain the steps required for adjusting the input parameters of the system for the fabrication of a desired layer, which can reduce the complexity of interrelations among the variables, leading to a more accurate and flexible process design. |
doi_str_mv | 10.1007/s12633-019-00167-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919506772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919506772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8e61e4607969c469aa48bb3c3e92bf2ef92aabaef4365b40c86be8cd2a451e43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGr_gKuA62ge0yTXnfRhhYpCi7gLmTHRKfOoyYzQf290RHfezT1wzzkXPoTOGb1klKqryLgUglAGhFImFYEjNGJaSQLA9PGvps-naBLjjqYRXGkJIzS_t92bq21XFrbCiw9b9Um3DW49tmRTXq_wsqxqvGxDPRzKBgdPHhezpzneHGLn6niGTrytopv87DHaLhfb2YqsH27vZjdrUggGHdFOMpdJqkBCkUmwNtN5LgrhgOeeOw_c2tw6nwk5zTNaaJk7Xbxwm01TUIzRxVC7D-1772Jndm0fmvTRcGAwpVIpnlx8cBWhjTE4b_ahrG04GEbNFy8z8DKJl_nmZSCFxBCKydy8uvBX_U_qE3l-bDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919506772</pqid></control><display><type>article</type><title>Mathematical Evaluation of a-Si:H Film Formation in rf-PECVD Systems</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ganji, Jabbar ; Kosarian, Abdolnabi ; Kaabi, Hooman</creator><creatorcontrib>Ganji, Jabbar ; Kosarian, Abdolnabi ; Kaabi, Hooman</creatorcontrib><description>Radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) is an efficient technique for preparing hydrogenated amorphous silicon (a-Si:H) layers used in thin film silicon solar cells. The most important parameters in a PECVD system are the chamber pressure, substrate temperature, partial gas flow, plasma power, electrode spacing, and deposition time, by which the physical and electrical parameters of the deposited layers, such as phase, quality, thickness, doping concentration, energy gap, defect density, and mobility can be controlled. Moreover, some of the film parameters are indirectly related to the others. As a result, it is always difficult to describe the relations between the deposition parameters and the specifications of the deposited layer in closed-form equations, therefore, prediction of the properties of the deposited films remains an issue. In addition, the helpful facilities for in-situ monitoring of the film under deposition are very limited. In this research, based on a broad experimental data reported in the literature, it has been found that in many cases the performance of a PECVD system can be described in equation or graph forms, and effective estimations may be established for prediction of its performance. A flowchart is also presented to explain the steps required for adjusting the input parameters of the system for the fabrication of a desired layer, which can reduce the complexity of interrelations among the variables, leading to a more accurate and flexible process design.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-019-00167-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amorphous silicon ; Chemistry ; Chemistry and Materials Science ; Energy gap ; Environmental Chemistry ; Flow charts ; Gas flow ; Inorganic Chemistry ; Lasers ; Materials Science ; Mathematical analysis ; Optical Devices ; Optics ; Original Paper ; Parameters ; Photonics ; Photovoltaic cells ; Plasma enhanced chemical vapor deposition ; Polymer Sciences ; Radio frequency plasma ; Solar cells ; Substrates ; Thin films</subject><ispartof>SILICON, 2020-03, Vol.12 (3), p.723-734</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Springer Nature B.V. 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8e61e4607969c469aa48bb3c3e92bf2ef92aabaef4365b40c86be8cd2a451e43</citedby><cites>FETCH-LOGICAL-c319t-8e61e4607969c469aa48bb3c3e92bf2ef92aabaef4365b40c86be8cd2a451e43</cites><orcidid>0000-0002-4590-2564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-019-00167-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919506772?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Ganji, Jabbar</creatorcontrib><creatorcontrib>Kosarian, Abdolnabi</creatorcontrib><creatorcontrib>Kaabi, Hooman</creatorcontrib><title>Mathematical Evaluation of a-Si:H Film Formation in rf-PECVD Systems</title><title>SILICON</title><addtitle>Silicon</addtitle><description>Radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) is an efficient technique for preparing hydrogenated amorphous silicon (a-Si:H) layers used in thin film silicon solar cells. The most important parameters in a PECVD system are the chamber pressure, substrate temperature, partial gas flow, plasma power, electrode spacing, and deposition time, by which the physical and electrical parameters of the deposited layers, such as phase, quality, thickness, doping concentration, energy gap, defect density, and mobility can be controlled. Moreover, some of the film parameters are indirectly related to the others. As a result, it is always difficult to describe the relations between the deposition parameters and the specifications of the deposited layer in closed-form equations, therefore, prediction of the properties of the deposited films remains an issue. In addition, the helpful facilities for in-situ monitoring of the film under deposition are very limited. In this research, based on a broad experimental data reported in the literature, it has been found that in many cases the performance of a PECVD system can be described in equation or graph forms, and effective estimations may be established for prediction of its performance. A flowchart is also presented to explain the steps required for adjusting the input parameters of the system for the fabrication of a desired layer, which can reduce the complexity of interrelations among the variables, leading to a more accurate and flexible process design.</description><subject>Amorphous silicon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Energy gap</subject><subject>Environmental Chemistry</subject><subject>Flow charts</subject><subject>Gas flow</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Polymer Sciences</subject><subject>Radio frequency plasma</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>Thin films</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEUhYMoWGr_gKuA62ge0yTXnfRhhYpCi7gLmTHRKfOoyYzQf290RHfezT1wzzkXPoTOGb1klKqryLgUglAGhFImFYEjNGJaSQLA9PGvps-naBLjjqYRXGkJIzS_t92bq21XFrbCiw9b9Um3DW49tmRTXq_wsqxqvGxDPRzKBgdPHhezpzneHGLn6niGTrytopv87DHaLhfb2YqsH27vZjdrUggGHdFOMpdJqkBCkUmwNtN5LgrhgOeeOw_c2tw6nwk5zTNaaJk7Xbxwm01TUIzRxVC7D-1772Jndm0fmvTRcGAwpVIpnlx8cBWhjTE4b_ahrG04GEbNFy8z8DKJl_nmZSCFxBCKydy8uvBX_U_qE3l-bDk</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Ganji, Jabbar</creator><creator>Kosarian, Abdolnabi</creator><creator>Kaabi, Hooman</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4590-2564</orcidid></search><sort><creationdate>20200301</creationdate><title>Mathematical Evaluation of a-Si:H Film Formation in rf-PECVD Systems</title><author>Ganji, Jabbar ; Kosarian, Abdolnabi ; Kaabi, Hooman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8e61e4607969c469aa48bb3c3e92bf2ef92aabaef4365b40c86be8cd2a451e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amorphous silicon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Energy gap</topic><topic>Environmental Chemistry</topic><topic>Flow charts</topic><topic>Gas flow</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Polymer Sciences</topic><topic>Radio frequency plasma</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganji, Jabbar</creatorcontrib><creatorcontrib>Kosarian, Abdolnabi</creatorcontrib><creatorcontrib>Kaabi, Hooman</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganji, Jabbar</au><au>Kosarian, Abdolnabi</au><au>Kaabi, Hooman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Evaluation of a-Si:H Film Formation in rf-PECVD Systems</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>723</spage><epage>734</epage><pages>723-734</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>Radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) is an efficient technique for preparing hydrogenated amorphous silicon (a-Si:H) layers used in thin film silicon solar cells. The most important parameters in a PECVD system are the chamber pressure, substrate temperature, partial gas flow, plasma power, electrode spacing, and deposition time, by which the physical and electrical parameters of the deposited layers, such as phase, quality, thickness, doping concentration, energy gap, defect density, and mobility can be controlled. Moreover, some of the film parameters are indirectly related to the others. As a result, it is always difficult to describe the relations between the deposition parameters and the specifications of the deposited layer in closed-form equations, therefore, prediction of the properties of the deposited films remains an issue. In addition, the helpful facilities for in-situ monitoring of the film under deposition are very limited. In this research, based on a broad experimental data reported in the literature, it has been found that in many cases the performance of a PECVD system can be described in equation or graph forms, and effective estimations may be established for prediction of its performance. A flowchart is also presented to explain the steps required for adjusting the input parameters of the system for the fabrication of a desired layer, which can reduce the complexity of interrelations among the variables, leading to a more accurate and flexible process design.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-019-00167-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4590-2564</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2020-03, Vol.12 (3), p.723-734 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2919506772 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Amorphous silicon Chemistry Chemistry and Materials Science Energy gap Environmental Chemistry Flow charts Gas flow Inorganic Chemistry Lasers Materials Science Mathematical analysis Optical Devices Optics Original Paper Parameters Photonics Photovoltaic cells Plasma enhanced chemical vapor deposition Polymer Sciences Radio frequency plasma Solar cells Substrates Thin films |
title | Mathematical Evaluation of a-Si:H Film Formation in rf-PECVD Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A23%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Evaluation%20of%20a-Si:H%20Film%20Formation%20in%20rf-PECVD%20Systems&rft.jtitle=SILICON&rft.au=Ganji,%20Jabbar&rft.date=2020-03-01&rft.volume=12&rft.issue=3&rft.spage=723&rft.epage=734&rft.pages=723-734&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-019-00167-9&rft_dat=%3Cproquest_cross%3E2919506772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919506772&rft_id=info:pmid/&rfr_iscdi=true |