On the invariant method for the time-dependent non-Hermitian Hamiltonians

. We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H ( t ) that generate a real phase in their time evolution. This involves the use of invariant operators I P H ( t ) that are pseudo-Hermitian with respect to the time-dependent metric operator, which impli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2017-06, Vol.132 (6), p.258, Article 258
Hauptverfasser: Khantoul, B., Bounames, A., Maamache, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 258
container_title European physical journal plus
container_volume 132
creator Khantoul, B.
Bounames, A.
Maamache, M.
description . We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H ( t ) that generate a real phase in their time evolution. This involves the use of invariant operators I P H ( t ) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H ( t ) is generally not quasi-Hermitian and does not define an observable of the system but I P H ( t ) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.
doi_str_mv 10.1140/epjp/i2017-11524-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919505763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919505763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c7aa0aa71eaadf0e7d2c5d1e0e9c0a19341e3f1a07e7f034c3a67165b1b3623</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKcFz7GZJLshRylqhUIvvYd0d9amdJM1SQX_vWkr6Mm5zMD7MfAQcg_sEUCyOY77ce44A0UBai6puiITDprRWkp5_ee-JbOU9qyM1CC1nJC3ta_yDivnP2101udqwLwLXdWHeBayG5B2OKLvsKg-eLrEOLhczNXSDu6Qgy93uiM3vT0knP3sKdm8PG8WS7pav74tnla0FaAzla2yllmrAK3teoaq423dATLULbOghQQUPVimUPVMyFbYRkFTb2ErGi6m5OFSO8bwccSUzT4coy8fDdega1arRhQXv7jaGFKK2JsxusHGLwPMnKCZEzRzhmbO0IwqIXEJpWL27xh_q_9JfQPDunGY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919505763</pqid></control><display><type>article</type><title>On the invariant method for the time-dependent non-Hermitian Hamiltonians</title><source>Springer Online Journals Complete</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Khantoul, B. ; Bounames, A. ; Maamache, M.</creator><creatorcontrib>Khantoul, B. ; Bounames, A. ; Maamache, M.</creatorcontrib><description>. We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H ( t ) that generate a real phase in their time evolution. This involves the use of invariant operators I P H ( t ) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H ( t ) is generally not quasi-Hermitian and does not define an observable of the system but I P H ( t ) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2017-11524-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Evolution ; Hamiltonian functions ; Harmonic oscillators ; Invariants ; Mathematical and Computational Physics ; Molecular ; Operators ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Quantum physics ; Regular Article ; Symmetry ; Theoretical ; Time dependence</subject><ispartof>European physical journal plus, 2017-06, Vol.132 (6), p.258, Article 258</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c7aa0aa71eaadf0e7d2c5d1e0e9c0a19341e3f1a07e7f034c3a67165b1b3623</citedby><cites>FETCH-LOGICAL-c319t-4c7aa0aa71eaadf0e7d2c5d1e0e9c0a19341e3f1a07e7f034c3a67165b1b3623</cites><orcidid>0000-0002-5998-2710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2017-11524-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919505763?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Khantoul, B.</creatorcontrib><creatorcontrib>Bounames, A.</creatorcontrib><creatorcontrib>Maamache, M.</creatorcontrib><title>On the invariant method for the time-dependent non-Hermitian Hamiltonians</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H ( t ) that generate a real phase in their time evolution. This involves the use of invariant operators I P H ( t ) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H ( t ) is generally not quasi-Hermitian and does not define an observable of the system but I P H ( t ) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Evolution</subject><subject>Hamiltonian functions</subject><subject>Harmonic oscillators</subject><subject>Invariants</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Operators</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum physics</subject><subject>Regular Article</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Time dependence</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKcFz7GZJLshRylqhUIvvYd0d9amdJM1SQX_vWkr6Mm5zMD7MfAQcg_sEUCyOY77ce44A0UBai6puiITDprRWkp5_ee-JbOU9qyM1CC1nJC3ta_yDivnP2101udqwLwLXdWHeBayG5B2OKLvsKg-eLrEOLhczNXSDu6Qgy93uiM3vT0knP3sKdm8PG8WS7pav74tnla0FaAzla2yllmrAK3teoaq423dATLULbOghQQUPVimUPVMyFbYRkFTb2ErGi6m5OFSO8bwccSUzT4coy8fDdega1arRhQXv7jaGFKK2JsxusHGLwPMnKCZEzRzhmbO0IwqIXEJpWL27xh_q_9JfQPDunGY</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Khantoul, B.</creator><creator>Bounames, A.</creator><creator>Maamache, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5998-2710</orcidid></search><sort><creationdate>20170601</creationdate><title>On the invariant method for the time-dependent non-Hermitian Hamiltonians</title><author>Khantoul, B. ; Bounames, A. ; Maamache, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c7aa0aa71eaadf0e7d2c5d1e0e9c0a19341e3f1a07e7f034c3a67165b1b3623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Evolution</topic><topic>Hamiltonian functions</topic><topic>Harmonic oscillators</topic><topic>Invariants</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Operators</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum physics</topic><topic>Regular Article</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khantoul, B.</creatorcontrib><creatorcontrib>Bounames, A.</creatorcontrib><creatorcontrib>Maamache, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khantoul, B.</au><au>Bounames, A.</au><au>Maamache, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the invariant method for the time-dependent non-Hermitian Hamiltonians</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>132</volume><issue>6</issue><spage>258</spage><pages>258-</pages><artnum>258</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. We propose a scheme to deal with certain time-dependent non-Hermitian Hamiltonian operators H ( t ) that generate a real phase in their time evolution. This involves the use of invariant operators I P H ( t ) that are pseudo-Hermitian with respect to the time-dependent metric operator, which implies that the dynamics is governed by unitary time evolution. Furthermore, H ( t ) is generally not quasi-Hermitian and does not define an observable of the system but I P H ( t ) obeys a quasi-Hermiticity transformation as in the completely time-independent Hamiltonian systems case. The harmonic oscillator with a time-dependent frequency under the action of a complex time-dependent linear potential is considered as an illustrative example.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2017-11524-7</doi><orcidid>https://orcid.org/0000-0002-5998-2710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2017-06, Vol.132 (6), p.258, Article 258
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919505763
source Springer Online Journals Complete; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Eigenvalues
Evolution
Hamiltonian functions
Harmonic oscillators
Invariants
Mathematical and Computational Physics
Molecular
Operators
Optical and Plasma Physics
Physics
Physics and Astronomy
Quantum physics
Regular Article
Symmetry
Theoretical
Time dependence
title On the invariant method for the time-dependent non-Hermitian Hamiltonians
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A03%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20invariant%20method%20for%20the%20time-dependent%20non-Hermitian%20Hamiltonians&rft.jtitle=European%20physical%20journal%20plus&rft.au=Khantoul,%20B.&rft.date=2017-06-01&rft.volume=132&rft.issue=6&rft.spage=258&rft.pages=258-&rft.artnum=258&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2017-11524-7&rft_dat=%3Cproquest_cross%3E2919505763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919505763&rft_id=info:pmid/&rfr_iscdi=true