Accurate feature extraction for multimodal biometrics combining iris and palmprint

Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biomet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2022-12, Vol.13 (12), p.5581-5589
Hauptverfasser: Vyas, Ritesh, Kanumuri, Tirupathiraju, Sheoran, Gyanendra, Dubey, Pawan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5589
container_issue 12
container_start_page 5581
container_title Journal of ambient intelligence and humanized computing
container_volume 13
creator Vyas, Ritesh
Kanumuri, Tirupathiraju
Sheoran, Gyanendra
Dubey, Pawan
description Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.
doi_str_mv 10.1007/s12652-021-03190-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919505561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919505561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFczySZtjsviFywIoueQ5mPJ0jZrkoL-e6sVvTmHmTm873w8CF0CuQZC6psMVHBaEQoVYSBJRU7QAhrRVBzW_PS3Z_U5WuV8IFMwyQBggZ43xoxJF4e902VMDrv3krQpIQ7Yx4T7sSuhj1Z3uA2xdyUFk7GJfRuGMOxxSCFjPVh81F1_TGEoF-jM6y671U9dote725ftQ7V7un_cbnaVYYKVyhjPRSOdg0Y2a22BW123tXDEEkONY5ysfeuFdFTollmjGz_prQTqCdiGLdHVPPeY4tvoclGHOKZhWqmoBMkJ5wImFZ1VJsWck_NqOrLX6UMBUV_41IxPTfjUN74pLxGbTfnro71Lf6P_cX0Cl_9z2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919505561</pqid></control><display><type>article</type><title>Accurate feature extraction for multimodal biometrics combining iris and palmprint</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Vyas, Ritesh ; Kanumuri, Tirupathiraju ; Sheoran, Gyanendra ; Dubey, Pawan</creator><creatorcontrib>Vyas, Ritesh ; Kanumuri, Tirupathiraju ; Sheoran, Gyanendra ; Dubey, Pawan</creatorcontrib><description>Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-021-03190-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Biometrics ; Business metrics ; Computational Intelligence ; Electrocardiography ; Engineering ; Feature extraction ; Image filters ; Linear programming ; Original Research ; Physiology ; Robotics and Automation ; Sensors ; Support vector machines ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2022-12, Vol.13 (12), p.5581-5589</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</citedby><cites>FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</cites><orcidid>0000-0002-9739-2551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-021-03190-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919505561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Vyas, Ritesh</creatorcontrib><creatorcontrib>Kanumuri, Tirupathiraju</creatorcontrib><creatorcontrib>Sheoran, Gyanendra</creatorcontrib><creatorcontrib>Dubey, Pawan</creatorcontrib><title>Accurate feature extraction for multimodal biometrics combining iris and palmprint</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Biometrics</subject><subject>Business metrics</subject><subject>Computational Intelligence</subject><subject>Electrocardiography</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Image filters</subject><subject>Linear programming</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Robotics and Automation</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFczySZtjsviFywIoueQ5mPJ0jZrkoL-e6sVvTmHmTm873w8CF0CuQZC6psMVHBaEQoVYSBJRU7QAhrRVBzW_PS3Z_U5WuV8IFMwyQBggZ43xoxJF4e902VMDrv3krQpIQ7Yx4T7sSuhj1Z3uA2xdyUFk7GJfRuGMOxxSCFjPVh81F1_TGEoF-jM6y671U9dote725ftQ7V7un_cbnaVYYKVyhjPRSOdg0Y2a22BW123tXDEEkONY5ysfeuFdFTollmjGz_prQTqCdiGLdHVPPeY4tvoclGHOKZhWqmoBMkJ5wImFZ1VJsWck_NqOrLX6UMBUV_41IxPTfjUN74pLxGbTfnro71Lf6P_cX0Cl_9z2Q</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Vyas, Ritesh</creator><creator>Kanumuri, Tirupathiraju</creator><creator>Sheoran, Gyanendra</creator><creator>Dubey, Pawan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9739-2551</orcidid></search><sort><creationdate>20221201</creationdate><title>Accurate feature extraction for multimodal biometrics combining iris and palmprint</title><author>Vyas, Ritesh ; Kanumuri, Tirupathiraju ; Sheoran, Gyanendra ; Dubey, Pawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Biometrics</topic><topic>Business metrics</topic><topic>Computational Intelligence</topic><topic>Electrocardiography</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Image filters</topic><topic>Linear programming</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Robotics and Automation</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vyas, Ritesh</creatorcontrib><creatorcontrib>Kanumuri, Tirupathiraju</creatorcontrib><creatorcontrib>Sheoran, Gyanendra</creatorcontrib><creatorcontrib>Dubey, Pawan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vyas, Ritesh</au><au>Kanumuri, Tirupathiraju</au><au>Sheoran, Gyanendra</au><au>Dubey, Pawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate feature extraction for multimodal biometrics combining iris and palmprint</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>5581</spage><epage>5589</epage><pages>5581-5589</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-021-03190-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9739-2551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2022-12, Vol.13 (12), p.5581-5589
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919505561
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Artificial Intelligence
Biometrics
Business metrics
Computational Intelligence
Electrocardiography
Engineering
Feature extraction
Image filters
Linear programming
Original Research
Physiology
Robotics and Automation
Sensors
Support vector machines
User Interfaces and Human Computer Interaction
title Accurate feature extraction for multimodal biometrics combining iris and palmprint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20feature%20extraction%20for%20multimodal%20biometrics%20combining%20iris%20and%20palmprint&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Vyas,%20Ritesh&rft.date=2022-12-01&rft.volume=13&rft.issue=12&rft.spage=5581&rft.epage=5589&rft.pages=5581-5589&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-021-03190-0&rft_dat=%3Cproquest_cross%3E2919505561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919505561&rft_id=info:pmid/&rfr_iscdi=true