Accurate feature extraction for multimodal biometrics combining iris and palmprint
Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biomet...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2022-12, Vol.13 (12), p.5581-5589 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5589 |
---|---|
container_issue | 12 |
container_start_page | 5581 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 13 |
creator | Vyas, Ritesh Kanumuri, Tirupathiraju Sheoran, Gyanendra Dubey, Pawan |
description | Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach. |
doi_str_mv | 10.1007/s12652-021-03190-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919505561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919505561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwFPFczySZtjsviFywIoueQ5mPJ0jZrkoL-e6sVvTmHmTm873w8CF0CuQZC6psMVHBaEQoVYSBJRU7QAhrRVBzW_PS3Z_U5WuV8IFMwyQBggZ43xoxJF4e902VMDrv3krQpIQ7Yx4T7sSuhj1Z3uA2xdyUFk7GJfRuGMOxxSCFjPVh81F1_TGEoF-jM6y671U9dote725ftQ7V7un_cbnaVYYKVyhjPRSOdg0Y2a22BW123tXDEEkONY5ysfeuFdFTollmjGz_prQTqCdiGLdHVPPeY4tvoclGHOKZhWqmoBMkJ5wImFZ1VJsWck_NqOrLX6UMBUV_41IxPTfjUN74pLxGbTfnro71Lf6P_cX0Cl_9z2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919505561</pqid></control><display><type>article</type><title>Accurate feature extraction for multimodal biometrics combining iris and palmprint</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Vyas, Ritesh ; Kanumuri, Tirupathiraju ; Sheoran, Gyanendra ; Dubey, Pawan</creator><creatorcontrib>Vyas, Ritesh ; Kanumuri, Tirupathiraju ; Sheoran, Gyanendra ; Dubey, Pawan</creatorcontrib><description>Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-021-03190-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial Intelligence ; Biometrics ; Business metrics ; Computational Intelligence ; Electrocardiography ; Engineering ; Feature extraction ; Image filters ; Linear programming ; Original Research ; Physiology ; Robotics and Automation ; Sensors ; Support vector machines ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2022-12, Vol.13 (12), p.5581-5589</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</citedby><cites>FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</cites><orcidid>0000-0002-9739-2551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-021-03190-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919505561?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Vyas, Ritesh</creatorcontrib><creatorcontrib>Kanumuri, Tirupathiraju</creatorcontrib><creatorcontrib>Sheoran, Gyanendra</creatorcontrib><creatorcontrib>Dubey, Pawan</creatorcontrib><title>Accurate feature extraction for multimodal biometrics combining iris and palmprint</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Biometrics</subject><subject>Business metrics</subject><subject>Computational Intelligence</subject><subject>Electrocardiography</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Image filters</subject><subject>Linear programming</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Robotics and Automation</subject><subject>Sensors</subject><subject>Support vector machines</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwFPFczySZtjsviFywIoueQ5mPJ0jZrkoL-e6sVvTmHmTm873w8CF0CuQZC6psMVHBaEQoVYSBJRU7QAhrRVBzW_PS3Z_U5WuV8IFMwyQBggZ43xoxJF4e902VMDrv3krQpIQ7Yx4T7sSuhj1Z3uA2xdyUFk7GJfRuGMOxxSCFjPVh81F1_TGEoF-jM6y671U9dote725ftQ7V7un_cbnaVYYKVyhjPRSOdg0Y2a22BW123tXDEEkONY5ysfeuFdFTollmjGz_prQTqCdiGLdHVPPeY4tvoclGHOKZhWqmoBMkJ5wImFZ1VJsWck_NqOrLX6UMBUV_41IxPTfjUN74pLxGbTfnro71Lf6P_cX0Cl_9z2Q</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Vyas, Ritesh</creator><creator>Kanumuri, Tirupathiraju</creator><creator>Sheoran, Gyanendra</creator><creator>Dubey, Pawan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9739-2551</orcidid></search><sort><creationdate>20221201</creationdate><title>Accurate feature extraction for multimodal biometrics combining iris and palmprint</title><author>Vyas, Ritesh ; Kanumuri, Tirupathiraju ; Sheoran, Gyanendra ; Dubey, Pawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ccf5689ee18984ad15da7b76e0d0c2ce3504fbf69e26ab3dca8f689d912f01d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Biometrics</topic><topic>Business metrics</topic><topic>Computational Intelligence</topic><topic>Electrocardiography</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Image filters</topic><topic>Linear programming</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Robotics and Automation</topic><topic>Sensors</topic><topic>Support vector machines</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vyas, Ritesh</creatorcontrib><creatorcontrib>Kanumuri, Tirupathiraju</creatorcontrib><creatorcontrib>Sheoran, Gyanendra</creatorcontrib><creatorcontrib>Dubey, Pawan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vyas, Ritesh</au><au>Kanumuri, Tirupathiraju</au><au>Sheoran, Gyanendra</au><au>Dubey, Pawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate feature extraction for multimodal biometrics combining iris and palmprint</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>13</volume><issue>12</issue><spage>5581</spage><epage>5589</epage><pages>5581-5589</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Multimodal biometric systems provide a way to combat with the limitations of a unimodal biometric system which include less accuracy and user acceptability. In this context, a coding based approach called bit-transition code, is proposed for addressing the less-explored problem of designing a biometric-based authentication system by combining the iris and palmprint modalities. The approach is based on the encoding of binary transitions of symmetric and asymmetric parts of the Gabor filtered images at all pixel locations. Score-level fusion is employed to integrate the individual iris and palmprint performances. Experiments are carried out with three benchmark iris/palmprint databases, namely IITD iris and palmprint databases and PolyU palmprint database. The performance is measured in terms of receiver operator characteristics (ROC) curves and other metrics, like equal error rate and area under ROC curves. A comprehensive comparison, with several state-of-the-art approaches, is presented in order to validate the usefulness of the proposed approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-021-03190-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9739-2551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2022-12, Vol.13 (12), p.5581-5589 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2919505561 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Accuracy Artificial Intelligence Biometrics Business metrics Computational Intelligence Electrocardiography Engineering Feature extraction Image filters Linear programming Original Research Physiology Robotics and Automation Sensors Support vector machines User Interfaces and Human Computer Interaction |
title | Accurate feature extraction for multimodal biometrics combining iris and palmprint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A50%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20feature%20extraction%20for%20multimodal%20biometrics%20combining%20iris%20and%20palmprint&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Vyas,%20Ritesh&rft.date=2022-12-01&rft.volume=13&rft.issue=12&rft.spage=5581&rft.epage=5589&rft.pages=5581-5589&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-021-03190-0&rft_dat=%3Cproquest_cross%3E2919505561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919505561&rft_id=info:pmid/&rfr_iscdi=true |