Diversity-promoting multi-view graph learning for semi-supervised classification

In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2021-10, Vol.12 (10), p.2843-2857
Hauptverfasser: Zhan, Shanhua, Sun, Weijun, Du, Cuifeng, Zhong, Weifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2857
container_issue 10
container_start_page 2843
container_title International journal of machine learning and cybernetics
container_volume 12
creator Zhan, Shanhua
Sun, Weijun
Du, Cuifeng
Zhong, Weifang
description In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.
doi_str_mv 10.1007/s13042-021-01370-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919501157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919501157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnkqZNj7J-woIeFLyFbJOuWfpl0q7svzdrRW_OZQbmfd8ZHkLOES4RIL8KyCFlFBhSQJ4DhSMyQ5lJKkG-Hf_OOZ6SRQhbiJUB58Bm5PnG7awPbtjT3ndNN7h2kzRjPTi6c_Yz2Xjdvye11b49bKrOJ8E2joaxt37ngjVJWesQXOVKPbiuPSMnla6DXfz0OXm9u31ZPtDV0_3j8npFS47FQGWBGrWtSl5KbtYGuMVMSMyF4UwIsLmxqVwLwRhyGcuYLEcjU1HJIuUFn5OLKTe-_THaMKhtN_o2nlSswEIAosijik2q0ncheFup3rtG-71CUAd4aoKnIjz1DU9BNPHJFKK43Vj_F_2P6wv9sHHb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919501157</pqid></control><display><type>article</type><title>Diversity-promoting multi-view graph learning for semi-supervised classification</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Zhan, Shanhua ; Sun, Weijun ; Du, Cuifeng ; Zhong, Weifang</creator><creatorcontrib>Zhan, Shanhua ; Sun, Weijun ; Du, Cuifeng ; Zhong, Weifang</creatorcontrib><description>In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-021-01370-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Graphs ; Labels ; Learning ; Mechatronics ; Optimization ; Original Article ; Pattern Recognition ; Performance evaluation ; Propagation ; Redundancy ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2021-10, Vol.12 (10), p.2843-2857</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</citedby><cites>FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</cites><orcidid>0000-0002-2342-4434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-021-01370-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919501157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhan, Shanhua</creatorcontrib><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Du, Cuifeng</creatorcontrib><creatorcontrib>Zhong, Weifang</creatorcontrib><title>Diversity-promoting multi-view graph learning for semi-supervised classification</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Graphs</subject><subject>Labels</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Performance evaluation</subject><subject>Propagation</subject><subject>Redundancy</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnkqZNj7J-woIeFLyFbJOuWfpl0q7svzdrRW_OZQbmfd8ZHkLOES4RIL8KyCFlFBhSQJ4DhSMyQ5lJKkG-Hf_OOZ6SRQhbiJUB58Bm5PnG7awPbtjT3ndNN7h2kzRjPTi6c_Yz2Xjdvye11b49bKrOJ8E2joaxt37ngjVJWesQXOVKPbiuPSMnla6DXfz0OXm9u31ZPtDV0_3j8npFS47FQGWBGrWtSl5KbtYGuMVMSMyF4UwIsLmxqVwLwRhyGcuYLEcjU1HJIuUFn5OLKTe-_THaMKhtN_o2nlSswEIAosijik2q0ncheFup3rtG-71CUAd4aoKnIjz1DU9BNPHJFKK43Vj_F_2P6wv9sHHb</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhan, Shanhua</creator><creator>Sun, Weijun</creator><creator>Du, Cuifeng</creator><creator>Zhong, Weifang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2342-4434</orcidid></search><sort><creationdate>20211001</creationdate><title>Diversity-promoting multi-view graph learning for semi-supervised classification</title><author>Zhan, Shanhua ; Sun, Weijun ; Du, Cuifeng ; Zhong, Weifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Graphs</topic><topic>Labels</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Performance evaluation</topic><topic>Propagation</topic><topic>Redundancy</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Shanhua</creatorcontrib><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Du, Cuifeng</creatorcontrib><creatorcontrib>Zhong, Weifang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Shanhua</au><au>Sun, Weijun</au><au>Du, Cuifeng</au><au>Zhong, Weifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity-promoting multi-view graph learning for semi-supervised classification</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>10</issue><spage>2843</spage><epage>2857</epage><pages>2843-2857</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-021-01370-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2342-4434</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2021-10, Vol.12 (10), p.2843-2857
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2919501157
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Control
Engineering
Graphs
Labels
Learning
Mechatronics
Optimization
Original Article
Pattern Recognition
Performance evaluation
Propagation
Redundancy
Robotics
Systems Biology
title Diversity-promoting multi-view graph learning for semi-supervised classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity-promoting%20multi-view%20graph%20learning%20for%20semi-supervised%20classification&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhan,%20Shanhua&rft.date=2021-10-01&rft.volume=12&rft.issue=10&rft.spage=2843&rft.epage=2857&rft.pages=2843-2857&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-021-01370-0&rft_dat=%3Cproquest_cross%3E2919501157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919501157&rft_id=info:pmid/&rfr_iscdi=true