Diversity-promoting multi-view graph learning for semi-supervised classification
In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view grap...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2021-10, Vol.12 (10), p.2843-2857 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2857 |
---|---|
container_issue | 10 |
container_start_page | 2843 |
container_title | International journal of machine learning and cybernetics |
container_volume | 12 |
creator | Zhan, Shanhua Sun, Weijun Du, Cuifeng Zhong, Weifang |
description | In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method. |
doi_str_mv | 10.1007/s13042-021-01370-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919501157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919501157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnkqZNj7J-woIeFLyFbJOuWfpl0q7svzdrRW_OZQbmfd8ZHkLOES4RIL8KyCFlFBhSQJ4DhSMyQ5lJKkG-Hf_OOZ6SRQhbiJUB58Bm5PnG7awPbtjT3ndNN7h2kzRjPTi6c_Yz2Xjdvye11b49bKrOJ8E2joaxt37ngjVJWesQXOVKPbiuPSMnla6DXfz0OXm9u31ZPtDV0_3j8npFS47FQGWBGrWtSl5KbtYGuMVMSMyF4UwIsLmxqVwLwRhyGcuYLEcjU1HJIuUFn5OLKTe-_THaMKhtN_o2nlSswEIAosijik2q0ncheFup3rtG-71CUAd4aoKnIjz1DU9BNPHJFKK43Vj_F_2P6wv9sHHb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919501157</pqid></control><display><type>article</type><title>Diversity-promoting multi-view graph learning for semi-supervised classification</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Zhan, Shanhua ; Sun, Weijun ; Du, Cuifeng ; Zhong, Weifang</creator><creatorcontrib>Zhan, Shanhua ; Sun, Weijun ; Du, Cuifeng ; Zhong, Weifang</creatorcontrib><description>In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-021-01370-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Classification ; Complex Systems ; Computational Intelligence ; Control ; Engineering ; Graphs ; Labels ; Learning ; Mechatronics ; Optimization ; Original Article ; Pattern Recognition ; Performance evaluation ; Propagation ; Redundancy ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2021-10, Vol.12 (10), p.2843-2857</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</citedby><cites>FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</cites><orcidid>0000-0002-2342-4434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-021-01370-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919501157?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhan, Shanhua</creatorcontrib><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Du, Cuifeng</creatorcontrib><creatorcontrib>Zhong, Weifang</creatorcontrib><title>Diversity-promoting multi-view graph learning for semi-supervised classification</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Engineering</subject><subject>Graphs</subject><subject>Labels</subject><subject>Learning</subject><subject>Mechatronics</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Performance evaluation</subject><subject>Propagation</subject><subject>Redundancy</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouKz7BzwVPEdnkqZNj7J-woIeFLyFbJOuWfpl0q7svzdrRW_OZQbmfd8ZHkLOES4RIL8KyCFlFBhSQJ4DhSMyQ5lJKkG-Hf_OOZ6SRQhbiJUB58Bm5PnG7awPbtjT3ndNN7h2kzRjPTi6c_Yz2Xjdvye11b49bKrOJ8E2joaxt37ngjVJWesQXOVKPbiuPSMnla6DXfz0OXm9u31ZPtDV0_3j8npFS47FQGWBGrWtSl5KbtYGuMVMSMyF4UwIsLmxqVwLwRhyGcuYLEcjU1HJIuUFn5OLKTe-_THaMKhtN_o2nlSswEIAosijik2q0ncheFup3rtG-71CUAd4aoKnIjz1DU9BNPHJFKK43Vj_F_2P6wv9sHHb</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Zhan, Shanhua</creator><creator>Sun, Weijun</creator><creator>Du, Cuifeng</creator><creator>Zhong, Weifang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-2342-4434</orcidid></search><sort><creationdate>20211001</creationdate><title>Diversity-promoting multi-view graph learning for semi-supervised classification</title><author>Zhan, Shanhua ; Sun, Weijun ; Du, Cuifeng ; Zhong, Weifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-891a1aefc3c83dbd03e1658175d32550e7de48b5522138888dd671d845f894393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Engineering</topic><topic>Graphs</topic><topic>Labels</topic><topic>Learning</topic><topic>Mechatronics</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Performance evaluation</topic><topic>Propagation</topic><topic>Redundancy</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Shanhua</creatorcontrib><creatorcontrib>Sun, Weijun</creatorcontrib><creatorcontrib>Du, Cuifeng</creatorcontrib><creatorcontrib>Zhong, Weifang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Shanhua</au><au>Sun, Weijun</au><au>Du, Cuifeng</au><au>Zhong, Weifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diversity-promoting multi-view graph learning for semi-supervised classification</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>10</issue><spage>2843</spage><epage>2857</epage><pages>2843-2857</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>In this paper, we focus on how to boost the semi-supervised classification performance by exploring the multi-view graph learning. The key of multi-view graph learning is to learn a discriminative and informative graph from the multiple input graphs. However, we observe that existing multi-view graph learning methods do not sufficiently consider the diversity among views. This results in giving great weighted coefficients for mutually redundant views and affects the diversity of information of views utilized for multi-view graph learning, which finally deteriorates the semi-supervised classification performance. To address this issue, we propose a robust multi-view graph learning method with a novel and effective diversity-promoting regularized term to reduce the redundancy of views and enhance the diversity of the views. To improve the accuracy of label propagation, we further propose a unified framework which integrates multi-view graph learning, label propagation and diversity-promoting of views together. We develop an effective alternating optimization strategy to solve the optimization problem. Extensive experiments on synthetic and several benchmark data sets demonstrate the effectiveness of the proposed method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-021-01370-0</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2342-4434</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2021-10, Vol.12 (10), p.2843-2857 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2919501157 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Artificial Intelligence Classification Complex Systems Computational Intelligence Control Engineering Graphs Labels Learning Mechatronics Optimization Original Article Pattern Recognition Performance evaluation Propagation Redundancy Robotics Systems Biology |
title | Diversity-promoting multi-view graph learning for semi-supervised classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diversity-promoting%20multi-view%20graph%20learning%20for%20semi-supervised%20classification&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhan,%20Shanhua&rft.date=2021-10-01&rft.volume=12&rft.issue=10&rft.spage=2843&rft.epage=2857&rft.pages=2843-2857&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-021-01370-0&rft_dat=%3Cproquest_cross%3E2919501157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919501157&rft_id=info:pmid/&rfr_iscdi=true |