Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems

Area-of-Interest (AOI) recommendation is a type of context-aware recommendation that works based on location-based data. A context-aware recommender system should be able to provide the recommendations to the users based on their request time. Often, existing context-aware systems assume that the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2021-10, Vol.12 (10), p.9535-9554
Hauptverfasser: Kolahkaj, Maral, Harounabadi, Ali, Nikravanshalmani, Alireza, Chinipardaz, Rahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9554
container_issue 10
container_start_page 9535
container_title Journal of ambient intelligence and humanized computing
container_volume 12
creator Kolahkaj, Maral
Harounabadi, Ali
Nikravanshalmani, Alireza
Chinipardaz, Rahim
description Area-of-Interest (AOI) recommendation is a type of context-aware recommendation that works based on location-based data. A context-aware recommender system should be able to provide the recommendations to the users based on their request time. Often, existing context-aware systems assume that the context information is constant over time and ignore dynamic users’ preferences. Besides, the development of a technique for incorporating auxiliary information within the recommendation models is a challenging task for the recommender systems. On another hand, the context pre/post filtering methods are inefficient in dealing with cold start and data sparsity problems. In these issues, there is not sufficient data to provide the accurate recommendation for the users. In this paper, a dynamic contextual modeling approach is proposed for improving the personalization in the sparse dataset. For this purpose, a density-based clustering algorithm is used for discovering the AOIs and coping with the sparsity problem. In addition, a hybrid similarity measurement is proposed to incorporate the auxiliary information into the recommendation process and suggest dynamic personalized AOIs in which the dynamic preferences of users are computed implicitly. The proposed similarity scheme using the auxiliary information can determine the neighborhood users for the cold start users, and accordingly, it can provide a list of recommendations to a target user. The experimental results based on Flickr and Yelp datasets demonstrate that the proposed method outperforms prior work on all three metrics, achieving a 10% increase on precision, a 25% increase on recall and 12% increase on F-Score in terms of quality metrics.
doi_str_mv 10.1007/s12652-020-02695-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919499194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919499194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f22cc57704410ac95f5cfd1d24bf292b9c8e87cc43eb85e524b379ee096f6a93</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB1wFXFfzaNpmKYOPAcGNrkOapmOGNqm5GWSW_nMzVnRnILmH3O_ckIPQJSXXlJD6BiirBCsII3lXUhTlCVrQpmoKQUtx-qt5fY5WADuSF5ecUrpAnxtvQpxC1Mn5LR73Q3KdG60HF7wesPN9iGNuBp91Crg7eD06g6M1YcxcN_emGIwFwJkwYbL4w6W3rIYOQ9IxYe07nFGNYdIRXDocHe1gR7hAZ70ewK5-6hK93t-9rB-Lp-eHzfr2qTCcylQ0PWPGiLomZUmJNlL0wvQd7VjZ9kyyVprGNrUxJbdtI6zI97yW1hJZ9ZWWfImu5rn54fe9haR2YR_zH0ExSWUpj0em2EyZGACi7dUU3ajjQVGijmmrOW2V01bfaaujic8myLDf2vg3-h_XF1-JhfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919499194</pqid></control><display><type>article</type><title>Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kolahkaj, Maral ; Harounabadi, Ali ; Nikravanshalmani, Alireza ; Chinipardaz, Rahim</creator><creatorcontrib>Kolahkaj, Maral ; Harounabadi, Ali ; Nikravanshalmani, Alireza ; Chinipardaz, Rahim</creatorcontrib><description>Area-of-Interest (AOI) recommendation is a type of context-aware recommendation that works based on location-based data. A context-aware recommender system should be able to provide the recommendations to the users based on their request time. Often, existing context-aware systems assume that the context information is constant over time and ignore dynamic users’ preferences. Besides, the development of a technique for incorporating auxiliary information within the recommendation models is a challenging task for the recommender systems. On another hand, the context pre/post filtering methods are inefficient in dealing with cold start and data sparsity problems. In these issues, there is not sufficient data to provide the accurate recommendation for the users. In this paper, a dynamic contextual modeling approach is proposed for improving the personalization in the sparse dataset. For this purpose, a density-based clustering algorithm is used for discovering the AOIs and coping with the sparsity problem. In addition, a hybrid similarity measurement is proposed to incorporate the auxiliary information into the recommendation process and suggest dynamic personalized AOIs in which the dynamic preferences of users are computed implicitly. The proposed similarity scheme using the auxiliary information can determine the neighborhood users for the cold start users, and accordingly, it can provide a list of recommendations to a target user. The experimental results based on Flickr and Yelp datasets demonstrate that the proposed method outperforms prior work on all three metrics, achieving a 10% increase on precision, a 25% increase on recall and 12% increase on F-Score in terms of quality metrics.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-020-02695-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Clustering ; Cold ; Collaboration ; Computational Intelligence ; Context ; Datasets ; Engineering ; Information overload ; Methods ; Original Research ; Ratings &amp; rankings ; Recommender systems ; Robotics and Automation ; Similarity ; Similarity measures ; Social networks ; Sparsity ; Tourism ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2021-10, Vol.12 (10), p.9535-9554</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f22cc57704410ac95f5cfd1d24bf292b9c8e87cc43eb85e524b379ee096f6a93</citedby><cites>FETCH-LOGICAL-c319t-8f22cc57704410ac95f5cfd1d24bf292b9c8e87cc43eb85e524b379ee096f6a93</cites><orcidid>0000-0003-2382-5120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-020-02695-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919499194?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21369,27905,27906,33725,41469,42538,43786,51300,64364,64368,72218</link.rule.ids></links><search><creatorcontrib>Kolahkaj, Maral</creatorcontrib><creatorcontrib>Harounabadi, Ali</creatorcontrib><creatorcontrib>Nikravanshalmani, Alireza</creatorcontrib><creatorcontrib>Chinipardaz, Rahim</creatorcontrib><title>Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Area-of-Interest (AOI) recommendation is a type of context-aware recommendation that works based on location-based data. A context-aware recommender system should be able to provide the recommendations to the users based on their request time. Often, existing context-aware systems assume that the context information is constant over time and ignore dynamic users’ preferences. Besides, the development of a technique for incorporating auxiliary information within the recommendation models is a challenging task for the recommender systems. On another hand, the context pre/post filtering methods are inefficient in dealing with cold start and data sparsity problems. In these issues, there is not sufficient data to provide the accurate recommendation for the users. In this paper, a dynamic contextual modeling approach is proposed for improving the personalization in the sparse dataset. For this purpose, a density-based clustering algorithm is used for discovering the AOIs and coping with the sparsity problem. In addition, a hybrid similarity measurement is proposed to incorporate the auxiliary information into the recommendation process and suggest dynamic personalized AOIs in which the dynamic preferences of users are computed implicitly. The proposed similarity scheme using the auxiliary information can determine the neighborhood users for the cold start users, and accordingly, it can provide a list of recommendations to a target user. The experimental results based on Flickr and Yelp datasets demonstrate that the proposed method outperforms prior work on all three metrics, achieving a 10% increase on precision, a 25% increase on recall and 12% increase on F-Score in terms of quality metrics.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Clustering</subject><subject>Cold</subject><subject>Collaboration</subject><subject>Computational Intelligence</subject><subject>Context</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Information overload</subject><subject>Methods</subject><subject>Original Research</subject><subject>Ratings &amp; rankings</subject><subject>Recommender systems</subject><subject>Robotics and Automation</subject><subject>Similarity</subject><subject>Similarity measures</subject><subject>Social networks</subject><subject>Sparsity</subject><subject>Tourism</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYMoOIzzB1wFXFfzaNpmKYOPAcGNrkOapmOGNqm5GWSW_nMzVnRnILmH3O_ckIPQJSXXlJD6BiirBCsII3lXUhTlCVrQpmoKQUtx-qt5fY5WADuSF5ecUrpAnxtvQpxC1Mn5LR73Q3KdG60HF7wesPN9iGNuBp91Crg7eD06g6M1YcxcN_emGIwFwJkwYbL4w6W3rIYOQ9IxYe07nFGNYdIRXDocHe1gR7hAZ70ewK5-6hK93t-9rB-Lp-eHzfr2qTCcylQ0PWPGiLomZUmJNlL0wvQd7VjZ9kyyVprGNrUxJbdtI6zI97yW1hJZ9ZWWfImu5rn54fe9haR2YR_zH0ExSWUpj0em2EyZGACi7dUU3ajjQVGijmmrOW2V01bfaaujic8myLDf2vg3-h_XF1-JhfA</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Kolahkaj, Maral</creator><creator>Harounabadi, Ali</creator><creator>Nikravanshalmani, Alireza</creator><creator>Chinipardaz, Rahim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2382-5120</orcidid></search><sort><creationdate>20211001</creationdate><title>Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems</title><author>Kolahkaj, Maral ; Harounabadi, Ali ; Nikravanshalmani, Alireza ; Chinipardaz, Rahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f22cc57704410ac95f5cfd1d24bf292b9c8e87cc43eb85e524b379ee096f6a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Clustering</topic><topic>Cold</topic><topic>Collaboration</topic><topic>Computational Intelligence</topic><topic>Context</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Information overload</topic><topic>Methods</topic><topic>Original Research</topic><topic>Ratings &amp; rankings</topic><topic>Recommender systems</topic><topic>Robotics and Automation</topic><topic>Similarity</topic><topic>Similarity measures</topic><topic>Social networks</topic><topic>Sparsity</topic><topic>Tourism</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kolahkaj, Maral</creatorcontrib><creatorcontrib>Harounabadi, Ali</creatorcontrib><creatorcontrib>Nikravanshalmani, Alireza</creatorcontrib><creatorcontrib>Chinipardaz, Rahim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kolahkaj, Maral</au><au>Harounabadi, Ali</au><au>Nikravanshalmani, Alireza</au><au>Chinipardaz, Rahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>12</volume><issue>10</issue><spage>9535</spage><epage>9554</epage><pages>9535-9554</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Area-of-Interest (AOI) recommendation is a type of context-aware recommendation that works based on location-based data. A context-aware recommender system should be able to provide the recommendations to the users based on their request time. Often, existing context-aware systems assume that the context information is constant over time and ignore dynamic users’ preferences. Besides, the development of a technique for incorporating auxiliary information within the recommendation models is a challenging task for the recommender systems. On another hand, the context pre/post filtering methods are inefficient in dealing with cold start and data sparsity problems. In these issues, there is not sufficient data to provide the accurate recommendation for the users. In this paper, a dynamic contextual modeling approach is proposed for improving the personalization in the sparse dataset. For this purpose, a density-based clustering algorithm is used for discovering the AOIs and coping with the sparsity problem. In addition, a hybrid similarity measurement is proposed to incorporate the auxiliary information into the recommendation process and suggest dynamic personalized AOIs in which the dynamic preferences of users are computed implicitly. The proposed similarity scheme using the auxiliary information can determine the neighborhood users for the cold start users, and accordingly, it can provide a list of recommendations to a target user. The experimental results based on Flickr and Yelp datasets demonstrate that the proposed method outperforms prior work on all three metrics, achieving a 10% increase on precision, a 25% increase on recall and 12% increase on F-Score in terms of quality metrics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-020-02695-4</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-2382-5120</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2021-10, Vol.12 (10), p.9535-9554
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919499194
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Clustering
Cold
Collaboration
Computational Intelligence
Context
Datasets
Engineering
Information overload
Methods
Original Research
Ratings & rankings
Recommender systems
Robotics and Automation
Similarity
Similarity measures
Social networks
Sparsity
Tourism
User Interfaces and Human Computer Interaction
title Incorporating multidimensional information into dynamic recommendation process to cope with cold start and data sparsity problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T00%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20multidimensional%20information%20into%20dynamic%20recommendation%20process%20to%20cope%20with%20cold%20start%20and%20data%20sparsity%20problems&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Kolahkaj,%20Maral&rft.date=2021-10-01&rft.volume=12&rft.issue=10&rft.spage=9535&rft.epage=9554&rft.pages=9535-9554&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-020-02695-4&rft_dat=%3Cproquest_cross%3E2919499194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919499194&rft_id=info:pmid/&rfr_iscdi=true