A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout
Presented herein is a novel numerical approach for the vibrational analysis of conical panels with arbitrary-shaped holes made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) within the framework of higher-order shear deformation theory (HSDT). The developed approach can be...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2021-06, Vol.136 (6), p.687, Article 687 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 687 |
container_title | European physical journal plus |
container_volume | 136 |
creator | Ansari, R. Hassani, R. Hasrati, E. Rouhi, H. |
description | Presented herein is a novel numerical approach for the vibrational analysis of conical panels with arbitrary-shaped holes made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) within the framework of higher-order shear deformation theory (HSDT). The developed approach can be called variational differential quadrature finite element method (VDQFEM) as it is based on the ideas of VDQ and finite element methods. The governing equations are obtained by means of Hamilton’s principle. Also, the relations of paper are presented in a new matrix–vector form which can be efficiently utilized in the coding process of numerical techniques. By VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element to derive the mass and stiffness matrices. Finally, the assemblage procedure is followed for obtaining total mass and stiffness matrices. Due to using HSDT, a novel mixed formulation approach is also proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Conical panels with square/circular/elliptical cutout and with crack are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the resonant frequencies of panels subject to various boundary conditions are investigated. |
doi_str_mv | 10.1140/epjp/s13360-021-01405-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919497997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919497997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-b19c0eb07e4e0c1032f6bd4e209a79ba26ff46a3eccba1dfc67155b0f140c88d3</originalsourceid><addsrcrecordid>eNqFkE1rwzAMQM3YYKXrb5hh56x24iT1sZR9QWGX7WxsR15TUjuznY72189tBtttukgIPQk9hG4puaeUkTn0234eaFFUJCM5zUhqltnxAk1yyklWMsYu_9TXaBbClqRgnDLOJgiW2A478K2WHQ5xaA7YWRw3gI0HwPtWeRlbZwN2BltpnXa73oU2AtbOnqleWugC_mrjBu-lb90QugMOG9lDg_UQ3RBv0JWRXYDZT56i98eHt9Vztn59elkt15kuChYzRbkmoEgNDIimpMhNpRoGOeGy5krmlTGskgVorSRtjK5qWpaKmPS1XiyaYoruxr29d58DhCi2bvA2nRQ5p5zxmvM6TdXjlPYuBA9G9L7dSX8QlIiTVnHSKkatImkVZ63imMjFSIZE2A_wv_v_Q78BcxCBnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919497997</pqid></control><display><type>article</type><title>A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Ansari, R. ; Hassani, R. ; Hasrati, E. ; Rouhi, H.</creator><creatorcontrib>Ansari, R. ; Hassani, R. ; Hasrati, E. ; Rouhi, H.</creatorcontrib><description>Presented herein is a novel numerical approach for the vibrational analysis of conical panels with arbitrary-shaped holes made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) within the framework of higher-order shear deformation theory (HSDT). The developed approach can be called variational differential quadrature finite element method (VDQFEM) as it is based on the ideas of VDQ and finite element methods. The governing equations are obtained by means of Hamilton’s principle. Also, the relations of paper are presented in a new matrix–vector form which can be efficiently utilized in the coding process of numerical techniques. By VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element to derive the mass and stiffness matrices. Finally, the assemblage procedure is followed for obtaining total mass and stiffness matrices. Due to using HSDT, a novel mixed formulation approach is also proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Conical panels with square/circular/elliptical cutout and with crack are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the resonant frequencies of panels subject to various boundary conditions are investigated.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-021-01405-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Boundary conditions ; Carbon ; Complex Systems ; Composite materials ; Condensed Matter Physics ; Finite element method ; Free vibration ; Functionally gradient materials ; Graphene ; Hamilton's principle ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Nanocomposites ; Numerical analysis ; Optical and Plasma Physics ; Panels ; Physics ; Physics and Astronomy ; Polymers ; Quadratures ; Regular Article ; Resonant frequencies ; Shear deformation ; Stiffness matrix ; Theoretical ; Vibration analysis</subject><ispartof>European physical journal plus, 2021-06, Vol.136 (6), p.687, Article 687</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-b19c0eb07e4e0c1032f6bd4e209a79ba26ff46a3eccba1dfc67155b0f140c88d3</citedby><cites>FETCH-LOGICAL-c334t-b19c0eb07e4e0c1032f6bd4e209a79ba26ff46a3eccba1dfc67155b0f140c88d3</cites><orcidid>0000-0002-6810-6624</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-021-01405-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919497997?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Ansari, R.</creatorcontrib><creatorcontrib>Hassani, R.</creatorcontrib><creatorcontrib>Hasrati, E.</creatorcontrib><creatorcontrib>Rouhi, H.</creatorcontrib><title>A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Presented herein is a novel numerical approach for the vibrational analysis of conical panels with arbitrary-shaped holes made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) within the framework of higher-order shear deformation theory (HSDT). The developed approach can be called variational differential quadrature finite element method (VDQFEM) as it is based on the ideas of VDQ and finite element methods. The governing equations are obtained by means of Hamilton’s principle. Also, the relations of paper are presented in a new matrix–vector form which can be efficiently utilized in the coding process of numerical techniques. By VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element to derive the mass and stiffness matrices. Finally, the assemblage procedure is followed for obtaining total mass and stiffness matrices. Due to using HSDT, a novel mixed formulation approach is also proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Conical panels with square/circular/elliptical cutout and with crack are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the resonant frequencies of panels subject to various boundary conditions are investigated.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Carbon</subject><subject>Complex Systems</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Finite element method</subject><subject>Free vibration</subject><subject>Functionally gradient materials</subject><subject>Graphene</subject><subject>Hamilton's principle</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Nanocomposites</subject><subject>Numerical analysis</subject><subject>Optical and Plasma Physics</subject><subject>Panels</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymers</subject><subject>Quadratures</subject><subject>Regular Article</subject><subject>Resonant frequencies</subject><subject>Shear deformation</subject><subject>Stiffness matrix</subject><subject>Theoretical</subject><subject>Vibration analysis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkE1rwzAMQM3YYKXrb5hh56x24iT1sZR9QWGX7WxsR15TUjuznY72189tBtttukgIPQk9hG4puaeUkTn0234eaFFUJCM5zUhqltnxAk1yyklWMsYu_9TXaBbClqRgnDLOJgiW2A478K2WHQ5xaA7YWRw3gI0HwPtWeRlbZwN2BltpnXa73oU2AtbOnqleWugC_mrjBu-lb90QugMOG9lDg_UQ3RBv0JWRXYDZT56i98eHt9Vztn59elkt15kuChYzRbkmoEgNDIimpMhNpRoGOeGy5krmlTGskgVorSRtjK5qWpaKmPS1XiyaYoruxr29d58DhCi2bvA2nRQ5p5zxmvM6TdXjlPYuBA9G9L7dSX8QlIiTVnHSKkatImkVZ63imMjFSIZE2A_wv_v_Q78BcxCBnA</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Ansari, R.</creator><creator>Hassani, R.</creator><creator>Hasrati, E.</creator><creator>Rouhi, H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6810-6624</orcidid></search><sort><creationdate>20210601</creationdate><title>A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout</title><author>Ansari, R. ; Hassani, R. ; Hasrati, E. ; Rouhi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-b19c0eb07e4e0c1032f6bd4e209a79ba26ff46a3eccba1dfc67155b0f140c88d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Carbon</topic><topic>Complex Systems</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Finite element method</topic><topic>Free vibration</topic><topic>Functionally gradient materials</topic><topic>Graphene</topic><topic>Hamilton's principle</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Nanocomposites</topic><topic>Numerical analysis</topic><topic>Optical and Plasma Physics</topic><topic>Panels</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymers</topic><topic>Quadratures</topic><topic>Regular Article</topic><topic>Resonant frequencies</topic><topic>Shear deformation</topic><topic>Stiffness matrix</topic><topic>Theoretical</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, R.</creatorcontrib><creatorcontrib>Hassani, R.</creatorcontrib><creatorcontrib>Hasrati, E.</creatorcontrib><creatorcontrib>Rouhi, H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, R.</au><au>Hassani, R.</au><au>Hasrati, E.</au><au>Rouhi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>136</volume><issue>6</issue><spage>687</spage><pages>687-</pages><artnum>687</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Presented herein is a novel numerical approach for the vibrational analysis of conical panels with arbitrary-shaped holes made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) within the framework of higher-order shear deformation theory (HSDT). The developed approach can be called variational differential quadrature finite element method (VDQFEM) as it is based on the ideas of VDQ and finite element methods. The governing equations are obtained by means of Hamilton’s principle. Also, the relations of paper are presented in a new matrix–vector form which can be efficiently utilized in the coding process of numerical techniques. By VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element to derive the mass and stiffness matrices. Finally, the assemblage procedure is followed for obtaining total mass and stiffness matrices. Due to using HSDT, a novel mixed formulation approach is also proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Conical panels with square/circular/elliptical cutout and with crack are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the resonant frequencies of panels subject to various boundary conditions are investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-021-01405-z</doi><orcidid>https://orcid.org/0000-0002-6810-6624</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2021-06, Vol.136 (6), p.687, Article 687 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2919497997 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Applied and Technical Physics Atomic Boundary conditions Carbon Complex Systems Composite materials Condensed Matter Physics Finite element method Free vibration Functionally gradient materials Graphene Hamilton's principle Mathematical analysis Mathematical and Computational Physics Molecular Nanocomposites Numerical analysis Optical and Plasma Physics Panels Physics Physics and Astronomy Polymers Quadratures Regular Article Resonant frequencies Shear deformation Stiffness matrix Theoretical Vibration analysis |
title | A numerical study on the free vibrations of nanocomposite conical panels with variously shaped cutout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20study%20on%20the%20free%20vibrations%20of%20nanocomposite%20conical%20panels%20with%20variously%20shaped%20cutout&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ansari,%20R.&rft.date=2021-06-01&rft.volume=136&rft.issue=6&rft.spage=687&rft.pages=687-&rft.artnum=687&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-021-01405-z&rft_dat=%3Cproquest_cross%3E2919497997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919497997&rft_id=info:pmid/&rfr_iscdi=true |