Discussion on “A guide to Monte Carlo simulation concepts for assessment of risk‑return profiles for regulatory purposes” (Graf and Korn, 2020)
First and foremost, this applies to consumers who need comprehensible product information. A similar approach has also been implemented by the Austrian and German insurance market as a “robust and recognized industry and regulatory standard” in the PRIIP regulation. Answers to these questions could...
Gespeichert in:
Veröffentlicht in: | European actuarial journal 2020-12, Vol.10 (2), p.299-301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 2 |
container_start_page | 299 |
container_title | European actuarial journal |
container_volume | 10 |
creator | Quapp, Norbert |
description | First and foremost, this applies to consumers who need comprehensible product information. A similar approach has also been implemented by the Austrian and German insurance market as a “robust and recognized industry and regulatory standard” in the PRIIP regulation. Answers to these questions could facilitate considerations as to whether a standardized model at EU level is more advisable for reasons of legal certainty or whether models are suitable that allow product- and country-specific adaptations. 1 https://www.eiopa.europa.eu/content/eiopa-finalises-regulation-pan-european-personal-pension-product_en. |
doi_str_mv | 10.1007/s13385-020-00249-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919492492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919492492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-682d4e1d5291198b55bdf9187731d724757b7dfb9a5c362f12b9d4a79b8f95643</originalsourceid><addsrcrecordid>eNp9kb1OwzAUhS0EElXpCzBZYgGJgH-SOB6rAgVRxAKz5SR2ldLGwTcZuvUVGNjg5fokuATBhmTpevjOucc-CB1TckEJEZdAOc-SiDASEcJiGWV7aMCoJJEUMd3_vXN-iEYAC0IIlTyWaTJA71cVFB1A5WocznbzMcbzrioNbh1-cHVr8ET7pcNQrbqlbndc4erCNC1g6zzWAAZgZeoWO4t9BS_bzZs3bedr3Hhnq6XpQW_mOwPn17jpfOOCbLv5xKdTry3WdYnvna_PMQvPODtCB1YvwYx-5hA931w_TW6j2eP0bjKeRQUTpI3SjJWxoWXCJKUyy5MkL62kmRCcloLFIhG5KG0udVLwlFnKclnGWsg8szJJYz5EJ71vSPraGWjVwoXgYaUKljKW4TdZoFhPFd4BeGNV46uV9mtFido1oPoGVIiuvhtQWRDxXgQBrufG_1n_o_oCFp2MRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919492492</pqid></control><display><type>article</type><title>Discussion on “A guide to Monte Carlo simulation concepts for assessment of risk‑return profiles for regulatory purposes” (Graf and Korn, 2020)</title><source>ProQuest Central (Alumni Edition)</source><source>SpringerLink Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Quapp, Norbert</creator><creatorcontrib>Quapp, Norbert</creatorcontrib><description>First and foremost, this applies to consumers who need comprehensible product information. A similar approach has also been implemented by the Austrian and German insurance market as a “robust and recognized industry and regulatory standard” in the PRIIP regulation. Answers to these questions could facilitate considerations as to whether a standardized model at EU level is more advisable for reasons of legal certainty or whether models are suitable that allow product- and country-specific adaptations. 1 https://www.eiopa.europa.eu/content/eiopa-finalises-regulation-pan-european-personal-pension-product_en.</description><identifier>ISSN: 2190-9733</identifier><identifier>EISSN: 2190-9741</identifier><identifier>DOI: 10.1007/s13385-020-00249-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Actuarial science ; Applications of Mathematics ; Approximation ; Discussion on Recent Papers ; Economics ; Financial Services ; Game Theory ; Mathematics ; Mathematics and Statistics ; Monte Carlo simulation ; Quantitative Finance ; Regulation ; Social and Behav. Sciences ; Stochastic models</subject><ispartof>European actuarial journal, 2020-12, Vol.10 (2), p.299-301</ispartof><rights>EAJ Association 2020</rights><rights>EAJ Association 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13385-020-00249-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919492492?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21391,27924,27925,33530,33744,34005,41488,42557,43659,43805,43953,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Quapp, Norbert</creatorcontrib><title>Discussion on “A guide to Monte Carlo simulation concepts for assessment of risk‑return profiles for regulatory purposes” (Graf and Korn, 2020)</title><title>European actuarial journal</title><addtitle>Eur. Actuar. J</addtitle><description>First and foremost, this applies to consumers who need comprehensible product information. A similar approach has also been implemented by the Austrian and German insurance market as a “robust and recognized industry and regulatory standard” in the PRIIP regulation. Answers to these questions could facilitate considerations as to whether a standardized model at EU level is more advisable for reasons of legal certainty or whether models are suitable that allow product- and country-specific adaptations. 1 https://www.eiopa.europa.eu/content/eiopa-finalises-regulation-pan-european-personal-pension-product_en.</description><subject>Actuarial science</subject><subject>Applications of Mathematics</subject><subject>Approximation</subject><subject>Discussion on Recent Papers</subject><subject>Economics</subject><subject>Financial Services</subject><subject>Game Theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monte Carlo simulation</subject><subject>Quantitative Finance</subject><subject>Regulation</subject><subject>Social and Behav. Sciences</subject><subject>Stochastic models</subject><issn>2190-9733</issn><issn>2190-9741</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kb1OwzAUhS0EElXpCzBZYgGJgH-SOB6rAgVRxAKz5SR2ldLGwTcZuvUVGNjg5fokuATBhmTpevjOucc-CB1TckEJEZdAOc-SiDASEcJiGWV7aMCoJJEUMd3_vXN-iEYAC0IIlTyWaTJA71cVFB1A5WocznbzMcbzrioNbh1-cHVr8ET7pcNQrbqlbndc4erCNC1g6zzWAAZgZeoWO4t9BS_bzZs3bedr3Hhnq6XpQW_mOwPn17jpfOOCbLv5xKdTry3WdYnvna_PMQvPODtCB1YvwYx-5hA931w_TW6j2eP0bjKeRQUTpI3SjJWxoWXCJKUyy5MkL62kmRCcloLFIhG5KG0udVLwlFnKclnGWsg8szJJYz5EJ71vSPraGWjVwoXgYaUKljKW4TdZoFhPFd4BeGNV46uV9mtFido1oPoGVIiuvhtQWRDxXgQBrufG_1n_o_oCFp2MRw</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Quapp, Norbert</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20201201</creationdate><title>Discussion on “A guide to Monte Carlo simulation concepts for assessment of risk‑return profiles for regulatory purposes” (Graf and Korn, 2020)</title><author>Quapp, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-682d4e1d5291198b55bdf9187731d724757b7dfb9a5c362f12b9d4a79b8f95643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actuarial science</topic><topic>Applications of Mathematics</topic><topic>Approximation</topic><topic>Discussion on Recent Papers</topic><topic>Economics</topic><topic>Financial Services</topic><topic>Game Theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monte Carlo simulation</topic><topic>Quantitative Finance</topic><topic>Regulation</topic><topic>Social and Behav. Sciences</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quapp, Norbert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>European actuarial journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quapp, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discussion on “A guide to Monte Carlo simulation concepts for assessment of risk‑return profiles for regulatory purposes” (Graf and Korn, 2020)</atitle><jtitle>European actuarial journal</jtitle><stitle>Eur. Actuar. J</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>2</issue><spage>299</spage><epage>301</epage><pages>299-301</pages><issn>2190-9733</issn><eissn>2190-9741</eissn><abstract>First and foremost, this applies to consumers who need comprehensible product information. A similar approach has also been implemented by the Austrian and German insurance market as a “robust and recognized industry and regulatory standard” in the PRIIP regulation. Answers to these questions could facilitate considerations as to whether a standardized model at EU level is more advisable for reasons of legal certainty or whether models are suitable that allow product- and country-specific adaptations. 1 https://www.eiopa.europa.eu/content/eiopa-finalises-regulation-pan-european-personal-pension-product_en.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13385-020-00249-8</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-9733 |
ispartof | European actuarial journal, 2020-12, Vol.10 (2), p.299-301 |
issn | 2190-9733 2190-9741 |
language | eng |
recordid | cdi_proquest_journals_2919492492 |
source | ProQuest Central (Alumni Edition); SpringerLink Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Actuarial science Applications of Mathematics Approximation Discussion on Recent Papers Economics Financial Services Game Theory Mathematics Mathematics and Statistics Monte Carlo simulation Quantitative Finance Regulation Social and Behav. Sciences Stochastic models |
title | Discussion on “A guide to Monte Carlo simulation concepts for assessment of risk‑return profiles for regulatory purposes” (Graf and Korn, 2020) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discussion%20on%20%E2%80%9CA%20guide%20to%20Monte%20Carlo%20simulation%20concepts%20for%20assessment%20of%20risk%E2%80%91return%20profiles%20for%20regulatory%20purposes%E2%80%9D%20(Graf%20and%20Korn,%202020)&rft.jtitle=European%20actuarial%20journal&rft.au=Quapp,%20Norbert&rft.date=2020-12-01&rft.volume=10&rft.issue=2&rft.spage=299&rft.epage=301&rft.pages=299-301&rft.issn=2190-9733&rft.eissn=2190-9741&rft_id=info:doi/10.1007/s13385-020-00249-8&rft_dat=%3Cproquest_cross%3E2919492492%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919492492&rft_id=info:pmid/&rfr_iscdi=true |