Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics

. The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2018-05, Vol.133 (5), p.184, Article 184
Hauptverfasser: Ahmad, Iftikhar, Ahmad, Sufyan, Awais, Muhammad, Ul Islam Ahmad, Siraj, Asif Zahoor Raja, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 184
container_title European physical journal plus
container_volume 133
creator Ahmad, Iftikhar
Ahmad, Sufyan
Awais, Muhammad
Ul Islam Ahmad, Siraj
Asif Zahoor Raja, Muhammad
description . The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.
doi_str_mv 10.1140/epjp/i2018-12013-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919492293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919492293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-76005da77a36fbe26bf70f2b4d7a15bd1633a172ecc7ddfc74dde0d2e6369a123</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGpfwFXAdWxunZilFC8DRQV1HTKTTEmZJtNkpuAj-Ry-mJlW0JVncS7w_-dwPgAuCb4mhOO57Tbd3FFMbhDJmSF2AiaUSIwWnPPTP_05mKW0wTm4JFzyCXh9skMMyO5DO_QueB0_YB22XR78GnY6auPWW9iECF-0863df31Cuxv0KEZlCZ2HPvjWeasjDF3v6nQBzhrdJjv7qVPwfn_3tnxEq-eHcnm7QjUjskeiwHhhtBCaFU1laVE1Aje04kZosqgMKRjTRFBb18KYphbcGIsNtQUrpCaUTcHVcW8Xw26wqVebMESfTyoqieSSUsmyih5VdQwpRduoLrpt_lMRrEZ-auSnDvzUgZ8aTexoSlns1zb-rv7H9Q0D_Xb9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919492293</pqid></control><display><type>article</type><title>Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Ahmad, Iftikhar ; Ahmad, Sufyan ; Awais, Muhammad ; Ul Islam Ahmad, Siraj ; Asif Zahoor Raja, Muhammad</creator><creatorcontrib>Ahmad, Iftikhar ; Ahmad, Sufyan ; Awais, Muhammad ; Ul Islam Ahmad, Siraj ; Asif Zahoor Raja, Muhammad</creatorcontrib><description>. The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2018-12013-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Artificial intelligence ; Atomic ; Complex Systems ; Condensed Matter Physics ; Cost function ; Genetic algorithms ; Information technology ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Molecular ; Neural networks ; Nonlinear optics ; Optical and Plasma Physics ; Optics ; Partial differential equations ; Physics ; Physics and Astronomy ; Quadratic programming ; Regular Article ; Statistical analysis ; Theoretical ; Variance analysis</subject><ispartof>European physical journal plus, 2018-05, Vol.133 (5), p.184, Article 184</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-76005da77a36fbe26bf70f2b4d7a15bd1633a172ecc7ddfc74dde0d2e6369a123</citedby><cites>FETCH-LOGICAL-c319t-76005da77a36fbe26bf70f2b4d7a15bd1633a172ecc7ddfc74dde0d2e6369a123</cites><orcidid>0000-0001-9953-822X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2018-12013-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919492293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Ahmad, Sufyan</creatorcontrib><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Ul Islam Ahmad, Siraj</creatorcontrib><creatorcontrib>Asif Zahoor Raja, Muhammad</creatorcontrib><title>Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.</description><subject>Applied and Technical Physics</subject><subject>Artificial intelligence</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cost function</subject><subject>Genetic algorithms</subject><subject>Information technology</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Molecular</subject><subject>Neural networks</subject><subject>Nonlinear optics</subject><subject>Optical and Plasma Physics</subject><subject>Optics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quadratic programming</subject><subject>Regular Article</subject><subject>Statistical analysis</subject><subject>Theoretical</subject><subject>Variance analysis</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtKAzEUhoMoWGpfwFXAdWxunZilFC8DRQV1HTKTTEmZJtNkpuAj-Ry-mJlW0JVncS7w_-dwPgAuCb4mhOO57Tbd3FFMbhDJmSF2AiaUSIwWnPPTP_05mKW0wTm4JFzyCXh9skMMyO5DO_QueB0_YB22XR78GnY6auPWW9iECF-0863df31Cuxv0KEZlCZ2HPvjWeasjDF3v6nQBzhrdJjv7qVPwfn_3tnxEq-eHcnm7QjUjskeiwHhhtBCaFU1laVE1Aje04kZosqgMKRjTRFBb18KYphbcGIsNtQUrpCaUTcHVcW8Xw26wqVebMESfTyoqieSSUsmyih5VdQwpRduoLrpt_lMRrEZ-auSnDvzUgZ8aTexoSlns1zb-rv7H9Q0D_Xb9</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Ahmad, Iftikhar</creator><creator>Ahmad, Sufyan</creator><creator>Awais, Muhammad</creator><creator>Ul Islam Ahmad, Siraj</creator><creator>Asif Zahoor Raja, Muhammad</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-9953-822X</orcidid></search><sort><creationdate>20180501</creationdate><title>Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics</title><author>Ahmad, Iftikhar ; Ahmad, Sufyan ; Awais, Muhammad ; Ul Islam Ahmad, Siraj ; Asif Zahoor Raja, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-76005da77a36fbe26bf70f2b4d7a15bd1633a172ecc7ddfc74dde0d2e6369a123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Artificial intelligence</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cost function</topic><topic>Genetic algorithms</topic><topic>Information technology</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Molecular</topic><topic>Neural networks</topic><topic>Nonlinear optics</topic><topic>Optical and Plasma Physics</topic><topic>Optics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quadratic programming</topic><topic>Regular Article</topic><topic>Statistical analysis</topic><topic>Theoretical</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Iftikhar</creatorcontrib><creatorcontrib>Ahmad, Sufyan</creatorcontrib><creatorcontrib>Awais, Muhammad</creatorcontrib><creatorcontrib>Ul Islam Ahmad, Siraj</creatorcontrib><creatorcontrib>Asif Zahoor Raja, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Iftikhar</au><au>Ahmad, Sufyan</au><au>Awais, Muhammad</au><au>Ul Islam Ahmad, Siraj</au><au>Asif Zahoor Raja, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>133</volume><issue>5</issue><spage>184</spage><pages>184-</pages><artnum>184</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. The aim of this study is to investigate the numerical treatment of the Painlevé equation-II arising in physical models of nonlinear optics through artificial intelligence procedures by incorporating a single layer structure of neural networks optimized with genetic algorithms, sequential quadratic programming and active set techniques. We constructed a mathematical model for the nonlinear Painlevé equation-II with the help of networks by defining an error-based cost function in mean square sense. The performance of the proposed technique is validated through statistical analyses by means of the one-way ANOVA test conducted on a dataset generated by a large number of independent runs.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2018-12013-3</doi><orcidid>https://orcid.org/0000-0001-9953-822X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2018-05, Vol.133 (5), p.184, Article 184
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2919492293
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Artificial intelligence
Atomic
Complex Systems
Condensed Matter Physics
Cost function
Genetic algorithms
Information technology
Mathematical and Computational Physics
Mathematical models
Mathematics
Molecular
Neural networks
Nonlinear optics
Optical and Plasma Physics
Optics
Partial differential equations
Physics
Physics and Astronomy
Quadratic programming
Regular Article
Statistical analysis
Theoretical
Variance analysis
title Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-evolutionary%20computing%20paradigm%20for%20Painlev%C3%A9%20equation-II%20in%20nonlinear%20optics&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ahmad,%20Iftikhar&rft.date=2018-05-01&rft.volume=133&rft.issue=5&rft.spage=184&rft.pages=184-&rft.artnum=184&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2018-12013-3&rft_dat=%3Cproquest_cross%3E2919492293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919492293&rft_id=info:pmid/&rfr_iscdi=true