An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network

As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation 2014-09, Vol.6 (3), p.293-303
Hauptverfasser: Feng, Ruibin, Xiao, Yi, Leung, Chi Sing, Tsang, Peter W. M., Sum, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 3
container_start_page 293
container_title Cognitive computation
container_volume 6
creator Feng, Ruibin
Xiao, Yi
Leung, Chi Sing
Tsang, Peter W. M.
Sum, John
description As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.
doi_str_mv 10.1007/s12559-013-9236-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919491099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919491099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRCMEEqXwAdwscQ7EduzYx1JRqFRRCZWz5STrNiV1iu2UwteTEkRPnHa0mpnVvii6xsktTpLszmPCmIwTTGNJKI_3J9EAC85jKXl6-qcZP48uvF8nCWeSkUH0NbJoutm6Zgclmui2DvGiqcFpG9A8X0MRqh2gSWs70VikbYlmoJ2t7BKN6mXjqrDaINM4tHC6-lmHFaAXXVa6RvfaV_6YfobWddtnCB-Ne7uMzoyuPVz9zmH0OnlYjJ_i2fxxOh7N4oIKHmJORVrkkNJMFoCFFDnHpQZjpCHc5LSQjBHghaHYEEYECCI5o2meQSa4pHQY3fS93ZfvLfig1k3rbHdSEYllKnEiZefCvatwjfcOjNq6aqPdp8KJOiBWPWLVIVYHxGrfZUif8Z3XLsEdm_8PfQMmX4A8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919491099</pqid></control><display><type>article</type><title>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Feng, Ruibin ; Xiao, Yi ; Leung, Chi Sing ; Tsang, Peter W. M. ; Sum, John</creator><creatorcontrib>Feng, Ruibin ; Xiao, Yi ; Leung, Chi Sing ; Tsang, Peter W. M. ; Sum, John</creatorcontrib><description>As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-013-9236-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Errors ; Fault tolerance ; Machine learning ; Neural networks ; Neurosciences ; Radial basis function ; Random variables</subject><ispartof>Cognitive computation, 2014-09, Vol.6 (3), p.293-303</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</citedby><cites>FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-013-9236-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919491099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Feng, Ruibin</creatorcontrib><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Leung, Chi Sing</creatorcontrib><creatorcontrib>Tsang, Peter W. M.</creatorcontrib><creatorcontrib>Sum, John</creatorcontrib><title>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Errors</subject><subject>Fault tolerance</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Radial basis function</subject><subject>Random variables</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFOwzAQRCMEEqXwAdwscQ7EduzYx1JRqFRRCZWz5STrNiV1iu2UwteTEkRPnHa0mpnVvii6xsktTpLszmPCmIwTTGNJKI_3J9EAC85jKXl6-qcZP48uvF8nCWeSkUH0NbJoutm6Zgclmui2DvGiqcFpG9A8X0MRqh2gSWs70VikbYlmoJ2t7BKN6mXjqrDaINM4tHC6-lmHFaAXXVa6RvfaV_6YfobWddtnCB-Ne7uMzoyuPVz9zmH0OnlYjJ_i2fxxOh7N4oIKHmJORVrkkNJMFoCFFDnHpQZjpCHc5LSQjBHghaHYEEYECCI5o2meQSa4pHQY3fS93ZfvLfig1k3rbHdSEYllKnEiZefCvatwjfcOjNq6aqPdp8KJOiBWPWLVIVYHxGrfZUif8Z3XLsEdm_8PfQMmX4A8</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Feng, Ruibin</creator><creator>Xiao, Yi</creator><creator>Leung, Chi Sing</creator><creator>Tsang, Peter W. M.</creator><creator>Sum, John</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140901</creationdate><title>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</title><author>Feng, Ruibin ; Xiao, Yi ; Leung, Chi Sing ; Tsang, Peter W. M. ; Sum, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Errors</topic><topic>Fault tolerance</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Radial basis function</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Ruibin</creatorcontrib><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Leung, Chi Sing</creatorcontrib><creatorcontrib>Tsang, Peter W. M.</creatorcontrib><creatorcontrib>Sum, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Ruibin</au><au>Xiao, Yi</au><au>Leung, Chi Sing</au><au>Tsang, Peter W. M.</au><au>Sum, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>6</volume><issue>3</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s12559-013-9236-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1866-9956
ispartof Cognitive computation, 2014-09, Vol.6 (3), p.293-303
issn 1866-9956
1866-9964
language eng
recordid cdi_proquest_journals_2919491099
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial Intelligence
Artificial neural networks
Biomedical and Life Sciences
Biomedicine
Brain
Computation by Abstract Devices
Computational Biology/Bioinformatics
Errors
Fault tolerance
Machine learning
Neural networks
Neurosciences
Radial basis function
Random variables
title An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Fault-Tolerant%20Objective%20Function%20and%20Learning%20Algorithm%20for%20Training%20the%20Radial%20Basis%20Function%20Neural%20Network&rft.jtitle=Cognitive%20computation&rft.au=Feng,%20Ruibin&rft.date=2014-09-01&rft.volume=6&rft.issue=3&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-013-9236-x&rft_dat=%3Cproquest_cross%3E2919491099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919491099&rft_id=info:pmid/&rfr_iscdi=true