An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network
As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (...
Gespeichert in:
Veröffentlicht in: | Cognitive computation 2014-09, Vol.6 (3), p.293-303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 3 |
container_start_page | 293 |
container_title | Cognitive computation |
container_volume | 6 |
creator | Feng, Ruibin Xiao, Yi Leung, Chi Sing Tsang, Peter W. M. Sum, John |
description | As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome. |
doi_str_mv | 10.1007/s12559-013-9236-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919491099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919491099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRCMEEqXwAdwscQ7EduzYx1JRqFRRCZWz5STrNiV1iu2UwteTEkRPnHa0mpnVvii6xsktTpLszmPCmIwTTGNJKI_3J9EAC85jKXl6-qcZP48uvF8nCWeSkUH0NbJoutm6Zgclmui2DvGiqcFpG9A8X0MRqh2gSWs70VikbYlmoJ2t7BKN6mXjqrDaINM4tHC6-lmHFaAXXVa6RvfaV_6YfobWddtnCB-Ne7uMzoyuPVz9zmH0OnlYjJ_i2fxxOh7N4oIKHmJORVrkkNJMFoCFFDnHpQZjpCHc5LSQjBHghaHYEEYECCI5o2meQSa4pHQY3fS93ZfvLfig1k3rbHdSEYllKnEiZefCvatwjfcOjNq6aqPdp8KJOiBWPWLVIVYHxGrfZUif8Z3XLsEdm_8PfQMmX4A8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919491099</pqid></control><display><type>article</type><title>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Feng, Ruibin ; Xiao, Yi ; Leung, Chi Sing ; Tsang, Peter W. M. ; Sum, John</creator><creatorcontrib>Feng, Ruibin ; Xiao, Yi ; Leung, Chi Sing ; Tsang, Peter W. M. ; Sum, John</creatorcontrib><description>As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-013-9236-x</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Artificial neural networks ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Errors ; Fault tolerance ; Machine learning ; Neural networks ; Neurosciences ; Radial basis function ; Random variables</subject><ispartof>Cognitive computation, 2014-09, Vol.6 (3), p.293-303</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>Springer Science+Business Media New York 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</citedby><cites>FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-013-9236-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919491099?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Feng, Ruibin</creatorcontrib><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Leung, Chi Sing</creatorcontrib><creatorcontrib>Tsang, Peter W. M.</creatorcontrib><creatorcontrib>Sum, John</creatorcontrib><title>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Errors</subject><subject>Fault tolerance</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neurosciences</subject><subject>Radial basis function</subject><subject>Random variables</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFOwzAQRCMEEqXwAdwscQ7EduzYx1JRqFRRCZWz5STrNiV1iu2UwteTEkRPnHa0mpnVvii6xsktTpLszmPCmIwTTGNJKI_3J9EAC85jKXl6-qcZP48uvF8nCWeSkUH0NbJoutm6Zgclmui2DvGiqcFpG9A8X0MRqh2gSWs70VikbYlmoJ2t7BKN6mXjqrDaINM4tHC6-lmHFaAXXVa6RvfaV_6YfobWddtnCB-Ne7uMzoyuPVz9zmH0OnlYjJ_i2fxxOh7N4oIKHmJORVrkkNJMFoCFFDnHpQZjpCHc5LSQjBHghaHYEEYECCI5o2meQSa4pHQY3fS93ZfvLfig1k3rbHdSEYllKnEiZefCvatwjfcOjNq6aqPdp8KJOiBWPWLVIVYHxGrfZUif8Z3XLsEdm_8PfQMmX4A8</recordid><startdate>20140901</startdate><enddate>20140901</enddate><creator>Feng, Ruibin</creator><creator>Xiao, Yi</creator><creator>Leung, Chi Sing</creator><creator>Tsang, Peter W. M.</creator><creator>Sum, John</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140901</creationdate><title>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</title><author>Feng, Ruibin ; Xiao, Yi ; Leung, Chi Sing ; Tsang, Peter W. M. ; Sum, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-6384cbe4379ce1898b61daeff9f26fb3c9552e6cf31f2528e8296534b7e786933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Errors</topic><topic>Fault tolerance</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neurosciences</topic><topic>Radial basis function</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Ruibin</creatorcontrib><creatorcontrib>Xiao, Yi</creatorcontrib><creatorcontrib>Leung, Chi Sing</creatorcontrib><creatorcontrib>Tsang, Peter W. M.</creatorcontrib><creatorcontrib>Sum, John</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Ruibin</au><au>Xiao, Yi</au><au>Leung, Chi Sing</au><au>Tsang, Peter W. M.</au><au>Sum, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2014-09-01</date><risdate>2014</risdate><volume>6</volume><issue>3</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>As the concept of artificial neural networks is based on the mechanism of the human brain, it is essential that a trained artificial neural network should exhibit certain amount of fault-tolerant ability. In this paper, we propose a fault-tolerant learning method for training radial basis function (RBF) networks that may contain the coexistence of the stuck-at-zero node fault and the stuck-at-one node fault. First, we provide a formulation for evaluating the mean square error of the faulty RBF networks. Next an objective function, together with an algorithm for training the fault-tolerant RBF networks, is developed. Subsequently, we derive a mean prediction error (MPE) formula to estimate the test set error of the faulty RBF networks. With the MPE formula, we can estimate the RBF width that leads to near-optimal fault-tolerant capability. Finally, simulations are conducted to demonstrate the feasibility of our method, as well as its compliance with the theoretical outcome.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s12559-013-9236-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-9956 |
ispartof | Cognitive computation, 2014-09, Vol.6 (3), p.293-303 |
issn | 1866-9956 1866-9964 |
language | eng |
recordid | cdi_proquest_journals_2919491099 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Algorithms Artificial Intelligence Artificial neural networks Biomedical and Life Sciences Biomedicine Brain Computation by Abstract Devices Computational Biology/Bioinformatics Errors Fault tolerance Machine learning Neural networks Neurosciences Radial basis function Random variables |
title | An Improved Fault-Tolerant Objective Function and Learning Algorithm for Training the Radial Basis Function Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A43%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Fault-Tolerant%20Objective%20Function%20and%20Learning%20Algorithm%20for%20Training%20the%20Radial%20Basis%20Function%20Neural%20Network&rft.jtitle=Cognitive%20computation&rft.au=Feng,%20Ruibin&rft.date=2014-09-01&rft.volume=6&rft.issue=3&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-013-9236-x&rft_dat=%3Cproquest_cross%3E2919491099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919491099&rft_id=info:pmid/&rfr_iscdi=true |