Improving Zero-Shot Learning Baselines with Commonsense Knowledge
Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used...
Gespeichert in:
Veröffentlicht in: | Cognitive computation 2022-11, Vol.14 (6), p.2212-2222 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2222 |
---|---|
container_issue | 6 |
container_start_page | 2212 |
container_title | Cognitive computation |
container_volume | 14 |
creator | Roy, Abhinaba Ghosal, Deepanway Cambria, Erik Majumder, Navonil Mihalcea, Rada Poria, Soujanya |
description | Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning. |
doi_str_mv | 10.1007/s12559-022-10044-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919487635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919487635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NmlyrMUvLHiwJy8hbCbtlm5Sk63Ff2_qit6EgfngfWeGB6FLSq4pIZObTJkQGhPGcOnrGpMjNKJKSqy1rI9_ayFP0VnOa0Kk0IKN0PSp26b40YZl9QYp4tdV7Ks52BQOo1ubYdMGyNW-7VfVLHZdDBlKVM8h7jfglnCOTrzdZLj4yWO0uL9bzB7x_OXhaTad44ZT3WPracM9t42QHryW0nGnqKBaKma5dqBrCV4pAMtANI5y4Zyytp4Q5rXnY3Q1rC3vvu8g92YddymUi4Zpqms1kVwUFRtUTYo5J_Bmm9rOpk9DiTmQMgMpU0iZb1KGFBMfTLmIwxLS3-p_XF_T1Wwx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919487635</pqid></control><display><type>article</type><title>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Roy, Abhinaba ; Ghosal, Deepanway ; Cambria, Erik ; Majumder, Navonil ; Mihalcea, Rada ; Poria, Soujanya</creator><creatorcontrib>Roy, Abhinaba ; Ghosal, Deepanway ; Cambria, Erik ; Majumder, Navonil ; Mihalcea, Rada ; Poria, Soujanya</creatorcontrib><description>Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-022-10044-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Computer Science ; Experiments ; Explicit knowledge ; Graphs ; Hypotheses ; Knowledge management ; Knowledge representation ; Semantics ; Zero-shot learning</subject><ispartof>Cognitive computation, 2022-11, Vol.14 (6), p.2212-2222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</citedby><cites>FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</cites><orcidid>0000-0002-3030-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-022-10044-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919487635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21397,27933,27934,33753,41497,42566,43814,51328,64394,64398,72478</link.rule.ids></links><search><creatorcontrib>Roy, Abhinaba</creatorcontrib><creatorcontrib>Ghosal, Deepanway</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Majumder, Navonil</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><creatorcontrib>Poria, Soujanya</creatorcontrib><title>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.</description><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Experiments</subject><subject>Explicit knowledge</subject><subject>Graphs</subject><subject>Hypotheses</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Semantics</subject><subject>Zero-shot learning</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NmlyrMUvLHiwJy8hbCbtlm5Sk63Ff2_qit6EgfngfWeGB6FLSq4pIZObTJkQGhPGcOnrGpMjNKJKSqy1rI9_ayFP0VnOa0Kk0IKN0PSp26b40YZl9QYp4tdV7Ks52BQOo1ubYdMGyNW-7VfVLHZdDBlKVM8h7jfglnCOTrzdZLj4yWO0uL9bzB7x_OXhaTad44ZT3WPracM9t42QHryW0nGnqKBaKma5dqBrCV4pAMtANI5y4Zyytp4Q5rXnY3Q1rC3vvu8g92YddymUi4Zpqms1kVwUFRtUTYo5J_Bmm9rOpk9DiTmQMgMpU0iZb1KGFBMfTLmIwxLS3-p_XF_T1Wwx</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Roy, Abhinaba</creator><creator>Ghosal, Deepanway</creator><creator>Cambria, Erik</creator><creator>Majumder, Navonil</creator><creator>Mihalcea, Rada</creator><creator>Poria, Soujanya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid></search><sort><creationdate>20221101</creationdate><title>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</title><author>Roy, Abhinaba ; Ghosal, Deepanway ; Cambria, Erik ; Majumder, Navonil ; Mihalcea, Rada ; Poria, Soujanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Experiments</topic><topic>Explicit knowledge</topic><topic>Graphs</topic><topic>Hypotheses</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Semantics</topic><topic>Zero-shot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Abhinaba</creatorcontrib><creatorcontrib>Ghosal, Deepanway</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Majumder, Navonil</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><creatorcontrib>Poria, Soujanya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Abhinaba</au><au>Ghosal, Deepanway</au><au>Cambria, Erik</au><au>Majumder, Navonil</au><au>Mihalcea, Rada</au><au>Poria, Soujanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>2212</spage><epage>2222</epage><pages>2212-2222</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12559-022-10044-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-9956 |
ispartof | Cognitive computation, 2022-11, Vol.14 (6), p.2212-2222 |
issn | 1866-9956 1866-9964 |
language | eng |
recordid | cdi_proquest_journals_2919487635 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Computation by Abstract Devices Computational Biology/Bioinformatics Computer Science Experiments Explicit knowledge Graphs Hypotheses Knowledge management Knowledge representation Semantics Zero-shot learning |
title | Improving Zero-Shot Learning Baselines with Commonsense Knowledge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Zero-Shot%20Learning%20Baselines%20with%20Commonsense%20Knowledge&rft.jtitle=Cognitive%20computation&rft.au=Roy,%20Abhinaba&rft.date=2022-11-01&rft.volume=14&rft.issue=6&rft.spage=2212&rft.epage=2222&rft.pages=2212-2222&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-022-10044-0&rft_dat=%3Cproquest_cross%3E2919487635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919487635&rft_id=info:pmid/&rfr_iscdi=true |