Improving Zero-Shot Learning Baselines with Commonsense Knowledge

Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation 2022-11, Vol.14 (6), p.2212-2222
Hauptverfasser: Roy, Abhinaba, Ghosal, Deepanway, Cambria, Erik, Majumder, Navonil, Mihalcea, Rada, Poria, Soujanya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2222
container_issue 6
container_start_page 2212
container_title Cognitive computation
container_volume 14
creator Roy, Abhinaba
Ghosal, Deepanway
Cambria, Erik
Majumder, Navonil
Mihalcea, Rada
Poria, Soujanya
description Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.
doi_str_mv 10.1007/s12559-022-10044-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919487635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919487635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NmlyrMUvLHiwJy8hbCbtlm5Sk63Ff2_qit6EgfngfWeGB6FLSq4pIZObTJkQGhPGcOnrGpMjNKJKSqy1rI9_ayFP0VnOa0Kk0IKN0PSp26b40YZl9QYp4tdV7Ks52BQOo1ubYdMGyNW-7VfVLHZdDBlKVM8h7jfglnCOTrzdZLj4yWO0uL9bzB7x_OXhaTad44ZT3WPracM9t42QHryW0nGnqKBaKma5dqBrCV4pAMtANI5y4Zyytp4Q5rXnY3Q1rC3vvu8g92YddymUi4Zpqms1kVwUFRtUTYo5J_Bmm9rOpk9DiTmQMgMpU0iZb1KGFBMfTLmIwxLS3-p_XF_T1Wwx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919487635</pqid></control><display><type>article</type><title>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Roy, Abhinaba ; Ghosal, Deepanway ; Cambria, Erik ; Majumder, Navonil ; Mihalcea, Rada ; Poria, Soujanya</creator><creatorcontrib>Roy, Abhinaba ; Ghosal, Deepanway ; Cambria, Erik ; Majumder, Navonil ; Mihalcea, Rada ; Poria, Soujanya</creatorcontrib><description>Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-022-10044-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Computer Science ; Experiments ; Explicit knowledge ; Graphs ; Hypotheses ; Knowledge management ; Knowledge representation ; Semantics ; Zero-shot learning</subject><ispartof>Cognitive computation, 2022-11, Vol.14 (6), p.2212-2222</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</citedby><cites>FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</cites><orcidid>0000-0002-3030-1280</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-022-10044-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919487635?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,782,786,21397,27933,27934,33753,41497,42566,43814,51328,64394,64398,72478</link.rule.ids></links><search><creatorcontrib>Roy, Abhinaba</creatorcontrib><creatorcontrib>Ghosal, Deepanway</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Majumder, Navonil</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><creatorcontrib>Poria, Soujanya</creatorcontrib><title>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.</description><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Experiments</subject><subject>Explicit knowledge</subject><subject>Graphs</subject><subject>Hypotheses</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Semantics</subject><subject>Zero-shot learning</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC52g-NmlyrMUvLHiwJy8hbCbtlm5Sk63Ff2_qit6EgfngfWeGB6FLSq4pIZObTJkQGhPGcOnrGpMjNKJKSqy1rI9_ayFP0VnOa0Kk0IKN0PSp26b40YZl9QYp4tdV7Ks52BQOo1ubYdMGyNW-7VfVLHZdDBlKVM8h7jfglnCOTrzdZLj4yWO0uL9bzB7x_OXhaTad44ZT3WPracM9t42QHryW0nGnqKBaKma5dqBrCV4pAMtANI5y4Zyytp4Q5rXnY3Q1rC3vvu8g92YddymUi4Zpqms1kVwUFRtUTYo5J_Bmm9rOpk9DiTmQMgMpU0iZb1KGFBMfTLmIwxLS3-p_XF_T1Wwx</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Roy, Abhinaba</creator><creator>Ghosal, Deepanway</creator><creator>Cambria, Erik</creator><creator>Majumder, Navonil</creator><creator>Mihalcea, Rada</creator><creator>Poria, Soujanya</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid></search><sort><creationdate>20221101</creationdate><title>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</title><author>Roy, Abhinaba ; Ghosal, Deepanway ; Cambria, Erik ; Majumder, Navonil ; Mihalcea, Rada ; Poria, Soujanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-af1c3f3ac56fef966d3d81519682a39de946ef88eea2e5cd135dd8aa4702f9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Experiments</topic><topic>Explicit knowledge</topic><topic>Graphs</topic><topic>Hypotheses</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Semantics</topic><topic>Zero-shot learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Abhinaba</creatorcontrib><creatorcontrib>Ghosal, Deepanway</creatorcontrib><creatorcontrib>Cambria, Erik</creatorcontrib><creatorcontrib>Majumder, Navonil</creatorcontrib><creatorcontrib>Mihalcea, Rada</creatorcontrib><creatorcontrib>Poria, Soujanya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Abhinaba</au><au>Ghosal, Deepanway</au><au>Cambria, Erik</au><au>Majumder, Navonil</au><au>Mihalcea, Rada</au><au>Poria, Soujanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Zero-Shot Learning Baselines with Commonsense Knowledge</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>2212</spage><epage>2222</epage><pages>2212-2222</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>Zero-shot learning — the problem of training and testing on a completely disjoint set of classes — relies greatly on its ability to transfer knowledge from train classes to test classes. Traditionally semantic embeddings consisting of human-defined attributes or distributed word embeddings are used to facilitate this transfer by improving the association between visual and semantic embeddings. In this paper, we take advantage of explicit relations between nodes defined in ConceptNet, a commonsense knowledge graph, to generate commonsense embeddings of the class labels by using a graph convolution network-based autoencoder. Our experiments performed on three standard benchmark datasets surpass the strong baselines when we fuse our commonsense embeddings with existing semantic embeddings, i.e., human-defined attributes and distributed word embeddings. This work paves the path to more brain-inspired approaches to zero-short learning.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12559-022-10044-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3030-1280</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-9956
ispartof Cognitive computation, 2022-11, Vol.14 (6), p.2212-2222
issn 1866-9956
1866-9964
language eng
recordid cdi_proquest_journals_2919487635
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
Experiments
Explicit knowledge
Graphs
Hypotheses
Knowledge management
Knowledge representation
Semantics
Zero-shot learning
title Improving Zero-Shot Learning Baselines with Commonsense Knowledge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T20%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Zero-Shot%20Learning%20Baselines%20with%20Commonsense%20Knowledge&rft.jtitle=Cognitive%20computation&rft.au=Roy,%20Abhinaba&rft.date=2022-11-01&rft.volume=14&rft.issue=6&rft.spage=2212&rft.epage=2222&rft.pages=2212-2222&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-022-10044-0&rft_dat=%3Cproquest_cross%3E2919487635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919487635&rft_id=info:pmid/&rfr_iscdi=true