Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension
Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to...
Gespeichert in:
Veröffentlicht in: | Acta oceanologica Sinica 2022-09, Vol.41 (9), p.137-148 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | 9 |
container_start_page | 137 |
container_title | Acta oceanologica Sinica |
container_volume | 41 |
creator | Yu, Fangjie Wang, Meiyu Qian, Sijia Chen, Ge |
description | Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to resolution limitations. Eddies drive local upwelling or downwelling, leaving signatures on sea surface temperatures (SSTs) and chlorophyll concentrations (Chls). SST can be observed by spaceborne infrared sensors, and Chl can be measured by ocean color remote sensing. Therefore, multisatellite observations provide an opportunity to obtain information to characterize SMEs. In this paper, an eddy detection algorithm based on SST and Chl images is proposed, which identifies eddies by characterizing the spatial and temporal distribution of SST and Chl data. The algorithm is applied to characterize and analyze SMEs in the Kuroshio Extension. Statistical results on their distribution and seasonal variability are shown, and the formation processes are preliminarily discussed. SMEs generation may be contributed by horizontal strain instability, the interaction of topographic obstacles and currents, and wind stress curl. |
doi_str_mv | 10.1007/s13131-022-1996-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919481974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919481974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-b0f48e8465844576d532dcdde714a69a30a6bb72118bea9b42ccad8abf6915163</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7hF4lyI0yRtjmgaH2KIC0iIS5S27tapa0eSIvbvySgSJ5APPvh5bfkh5BzYJTCWXXlIYyWM8wS0Vgk_IBPIlU6AaX1IJozLNJFMvh6TE-_XjEmQaTYhb49DGxpvA7ZtE5D2hUf3YUPTd572NfUb27bo6AZ970vbIsWq2tEldui-Kdp0NKyQPgyu96ump_PPgJ2Pk1NyVNvW49lPn5KXm_nz7C5ZPN3ez64XScm1CknBapFjLpTMhZCZqmTKq7KqMANhlbYps6ooMg6QF2h1IXhZ2iq3Ra00SFDplFyMe7eufx_QB7PuB9fFk4Zr0CIHnYl_qSw6EgJkFikYqTJ-4x3WZuuajXU7A8zsRZtRtImizV604THDx4yPbLdE97v579AXS-yBIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919481974</pqid></control><display><type>article</type><title>Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yu, Fangjie ; Wang, Meiyu ; Qian, Sijia ; Chen, Ge</creator><creatorcontrib>Yu, Fangjie ; Wang, Meiyu ; Qian, Sijia ; Chen, Ge</creatorcontrib><description>Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to resolution limitations. Eddies drive local upwelling or downwelling, leaving signatures on sea surface temperatures (SSTs) and chlorophyll concentrations (Chls). SST can be observed by spaceborne infrared sensors, and Chl can be measured by ocean color remote sensing. Therefore, multisatellite observations provide an opportunity to obtain information to characterize SMEs. In this paper, an eddy detection algorithm based on SST and Chl images is proposed, which identifies eddies by characterizing the spatial and temporal distribution of SST and Chl data. The algorithm is applied to characterize and analyze SMEs in the Kuroshio Extension. Statistical results on their distribution and seasonal variability are shown, and the formation processes are preliminarily discussed. SMEs generation may be contributed by horizontal strain instability, the interaction of topographic obstacles and currents, and wind stress curl.</description><identifier>ISSN: 0253-505X</identifier><identifier>EISSN: 1869-1099</identifier><identifier>DOI: 10.1007/s13131-022-1996-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Altimeters ; Chlorophyll ; Chlorophylls ; Climatology ; Downwelling ; Earth and Environmental Science ; Earth Sciences ; Ecology ; Eddies ; Engineering Fluid Dynamics ; Environmental Chemistry ; Infrared detectors ; Marine & Freshwater Sciences ; Mesoscale eddies ; Mesoscale phenomena ; Ocean circulation ; Ocean color ; Ocean colour ; Ocean temperature ; Oceanography ; Oceans ; Remote sensing ; Remote sensors ; Salinity ; Sea surface ; Sea surface temperature ; Seasonal distribution ; Seasonal variability ; Seasonal variation ; Seasonal variations ; Sensors ; Surface temperature ; Temperature effects ; Temporal distribution ; Upwelling ; Vortices ; Wind stress ; Wind stress curl</subject><ispartof>Acta oceanologica Sinica, 2022-09, Vol.41 (9), p.137-148</ispartof><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Chinese Society for Oceanography and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-b0f48e8465844576d532dcdde714a69a30a6bb72118bea9b42ccad8abf6915163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13131-022-1996-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919481974?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Yu, Fangjie</creatorcontrib><creatorcontrib>Wang, Meiyu</creatorcontrib><creatorcontrib>Qian, Sijia</creatorcontrib><creatorcontrib>Chen, Ge</creatorcontrib><title>Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension</title><title>Acta oceanologica Sinica</title><addtitle>Acta Oceanol. Sin</addtitle><description>Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to resolution limitations. Eddies drive local upwelling or downwelling, leaving signatures on sea surface temperatures (SSTs) and chlorophyll concentrations (Chls). SST can be observed by spaceborne infrared sensors, and Chl can be measured by ocean color remote sensing. Therefore, multisatellite observations provide an opportunity to obtain information to characterize SMEs. In this paper, an eddy detection algorithm based on SST and Chl images is proposed, which identifies eddies by characterizing the spatial and temporal distribution of SST and Chl data. The algorithm is applied to characterize and analyze SMEs in the Kuroshio Extension. Statistical results on their distribution and seasonal variability are shown, and the formation processes are preliminarily discussed. SMEs generation may be contributed by horizontal strain instability, the interaction of topographic obstacles and currents, and wind stress curl.</description><subject>Algorithms</subject><subject>Altimeters</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Climatology</subject><subject>Downwelling</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecology</subject><subject>Eddies</subject><subject>Engineering Fluid Dynamics</subject><subject>Environmental Chemistry</subject><subject>Infrared detectors</subject><subject>Marine & Freshwater Sciences</subject><subject>Mesoscale eddies</subject><subject>Mesoscale phenomena</subject><subject>Ocean circulation</subject><subject>Ocean color</subject><subject>Ocean colour</subject><subject>Ocean temperature</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Remote sensing</subject><subject>Remote sensors</subject><subject>Salinity</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Seasonal distribution</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Sensors</subject><subject>Surface temperature</subject><subject>Temperature effects</subject><subject>Temporal distribution</subject><subject>Upwelling</subject><subject>Vortices</subject><subject>Wind stress</subject><subject>Wind stress curl</subject><issn>0253-505X</issn><issn>1869-1099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PwzAMhiMEEmPwA7hF4lyI0yRtjmgaH2KIC0iIS5S27tapa0eSIvbvySgSJ5APPvh5bfkh5BzYJTCWXXlIYyWM8wS0Vgk_IBPIlU6AaX1IJozLNJFMvh6TE-_XjEmQaTYhb49DGxpvA7ZtE5D2hUf3YUPTd572NfUb27bo6AZ970vbIsWq2tEldui-Kdp0NKyQPgyu96ump_PPgJ2Pk1NyVNvW49lPn5KXm_nz7C5ZPN3ez64XScm1CknBapFjLpTMhZCZqmTKq7KqMANhlbYps6ooMg6QF2h1IXhZ2iq3Ra00SFDplFyMe7eufx_QB7PuB9fFk4Zr0CIHnYl_qSw6EgJkFikYqTJ-4x3WZuuajXU7A8zsRZtRtImizV604THDx4yPbLdE97v579AXS-yBIw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Yu, Fangjie</creator><creator>Wang, Meiyu</creator><creator>Qian, Sijia</creator><creator>Chen, Ge</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H97</scope><scope>H98</scope><scope>H99</scope><scope>HCIFZ</scope><scope>L.F</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20220901</creationdate><title>Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension</title><author>Yu, Fangjie ; Wang, Meiyu ; Qian, Sijia ; Chen, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-b0f48e8465844576d532dcdde714a69a30a6bb72118bea9b42ccad8abf6915163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Altimeters</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Climatology</topic><topic>Downwelling</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecology</topic><topic>Eddies</topic><topic>Engineering Fluid Dynamics</topic><topic>Environmental Chemistry</topic><topic>Infrared detectors</topic><topic>Marine & Freshwater Sciences</topic><topic>Mesoscale eddies</topic><topic>Mesoscale phenomena</topic><topic>Ocean circulation</topic><topic>Ocean color</topic><topic>Ocean colour</topic><topic>Ocean temperature</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Remote sensing</topic><topic>Remote sensors</topic><topic>Salinity</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Seasonal distribution</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Sensors</topic><topic>Surface temperature</topic><topic>Temperature effects</topic><topic>Temporal distribution</topic><topic>Upwelling</topic><topic>Vortices</topic><topic>Wind stress</topic><topic>Wind stress curl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Fangjie</creatorcontrib><creatorcontrib>Wang, Meiyu</creatorcontrib><creatorcontrib>Qian, Sijia</creatorcontrib><creatorcontrib>Chen, Ge</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>Acta oceanologica Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Fangjie</au><au>Wang, Meiyu</au><au>Qian, Sijia</au><au>Chen, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension</atitle><jtitle>Acta oceanologica Sinica</jtitle><stitle>Acta Oceanol. Sin</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>41</volume><issue>9</issue><spage>137</spage><epage>148</epage><pages>137-148</pages><issn>0253-505X</issn><eissn>1869-1099</eissn><abstract>Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to resolution limitations. Eddies drive local upwelling or downwelling, leaving signatures on sea surface temperatures (SSTs) and chlorophyll concentrations (Chls). SST can be observed by spaceborne infrared sensors, and Chl can be measured by ocean color remote sensing. Therefore, multisatellite observations provide an opportunity to obtain information to characterize SMEs. In this paper, an eddy detection algorithm based on SST and Chl images is proposed, which identifies eddies by characterizing the spatial and temporal distribution of SST and Chl data. The algorithm is applied to characterize and analyze SMEs in the Kuroshio Extension. Statistical results on their distribution and seasonal variability are shown, and the formation processes are preliminarily discussed. SMEs generation may be contributed by horizontal strain instability, the interaction of topographic obstacles and currents, and wind stress curl.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13131-022-1996-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-505X |
ispartof | Acta oceanologica Sinica, 2022-09, Vol.41 (9), p.137-148 |
issn | 0253-505X 1869-1099 |
language | eng |
recordid | cdi_proquest_journals_2919481974 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Altimeters Chlorophyll Chlorophylls Climatology Downwelling Earth and Environmental Science Earth Sciences Ecology Eddies Engineering Fluid Dynamics Environmental Chemistry Infrared detectors Marine & Freshwater Sciences Mesoscale eddies Mesoscale phenomena Ocean circulation Ocean color Ocean colour Ocean temperature Oceanography Oceans Remote sensing Remote sensors Salinity Sea surface Sea surface temperature Seasonal distribution Seasonal variability Seasonal variation Seasonal variations Sensors Surface temperature Temperature effects Temporal distribution Upwelling Vortices Wind stress Wind stress curl |
title | Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multisatellite%20observations%20of%20smaller%20mesoscale%20eddy%20generation%20in%20the%20Kuroshio%20Extension&rft.jtitle=Acta%20oceanologica%20Sinica&rft.au=Yu,%20Fangjie&rft.date=2022-09-01&rft.volume=41&rft.issue=9&rft.spage=137&rft.epage=148&rft.pages=137-148&rft.issn=0253-505X&rft.eissn=1869-1099&rft_id=info:doi/10.1007/s13131-022-1996-2&rft_dat=%3Cproquest_cross%3E2919481974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919481974&rft_id=info:pmid/&rfr_iscdi=true |