Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application

This paper presents an analytical modeling of a separated gate underlap graded N-channel FET to assess the short-channel effects. A 2D modeling scheme is employed to derive its surface potential, threshold voltage, subthreshold current and DIBL. The proposed structure includes four regions, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2021-02, Vol.13 (2), p.375-387
Hauptverfasser: Chattopadhyay, Ankush, Bose, Chayanika, Sarkar, Chandan K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 387
container_issue 2
container_start_page 375
container_title SILICON
container_volume 13
creator Chattopadhyay, Ankush
Bose, Chayanika
Sarkar, Chandan K.
description This paper presents an analytical modeling of a separated gate underlap graded N-channel FET to assess the short-channel effects. A 2D modeling scheme is employed to derive its surface potential, threshold voltage, subthreshold current and DIBL. The proposed structure includes four regions, and the potential function for each region is developed from solution of Poisson’s Equation using appropriate approximations. In order to estimate surface potential of the device, parabolic approximation scheme with geometrical approach is used in channel region to cater the influence of independently biased gates, while in source/drain underlap regions, conformal mapping is employed for the fringing field estimation. The study suggests that the independent gate bias, channel doping concentrations, spacer and other device parameters viz. underlap length, gate work function, gate oxide thickness etc. are efficacious in modulating the threshold voltage, subthreshold current and DIBL. The analytical results are compared with those obtained from TCAD device simulator, and found to match very closely. Moreover, the analytical solutions also follow the similar nature of variations as appeared in other experimental reports.
doi_str_mv 10.1007/s12633-020-00424-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919466171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919466171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e8be65ab7e261a16ca05bc6dcc885b9f30bdf3ccaf6fc0afc267b74ca68a76863</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYsoOHRfwKeAr9YlaZe0j6PqHMw_MAe-hds06Tq6pCYdQ_zyRiv6Zh5uLvee87twouiC4GuCMZ94QlmSxJjiGOOUpjE9ikYk4yzOc5Id__b49TQae7_F4SWUZywfRR-F3XUge_RgK9U2pkZWo7mDSlXoMS42YIxq0cJUqlOhmB7NoVfo7vYFHZp-g9Zh6Fro_BVaBY5yCEyFVpMbtOod1HWrkLYOLe0BPdtDWM-6rm0k9I0159GJhtar8c9_Fq0Dt7iPl0_zRTFbxjIheR-rrFRsCiVXlBEgTAKelpJVUmbZtMx1gstKJ1KCZlpi0JIyXvJUAsuAs4wlZ9HlwO2cfdsr34ut3TsTTgqakzxljHASVHRQSWe9d0qLzjU7cO-CYPGVsxhyFiFn8Z2zoMGUDCYfxKZW7g_9j-sTe8qApw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919466171</pqid></control><display><type>article</type><title>Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Chattopadhyay, Ankush ; Bose, Chayanika ; Sarkar, Chandan K.</creator><creatorcontrib>Chattopadhyay, Ankush ; Bose, Chayanika ; Sarkar, Chandan K.</creatorcontrib><description>This paper presents an analytical modeling of a separated gate underlap graded N-channel FET to assess the short-channel effects. A 2D modeling scheme is employed to derive its surface potential, threshold voltage, subthreshold current and DIBL. The proposed structure includes four regions, and the potential function for each region is developed from solution of Poisson’s Equation using appropriate approximations. In order to estimate surface potential of the device, parabolic approximation scheme with geometrical approach is used in channel region to cater the influence of independently biased gates, while in source/drain underlap regions, conformal mapping is employed for the fringing field estimation. The study suggests that the independent gate bias, channel doping concentrations, spacer and other device parameters viz. underlap length, gate work function, gate oxide thickness etc. are efficacious in modulating the threshold voltage, subthreshold current and DIBL. The analytical results are compared with those obtained from TCAD device simulator, and found to match very closely. Moreover, the analytical solutions also follow the similar nature of variations as appeared in other experimental reports.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-020-00424-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Approximation ; Chemistry ; Chemistry and Materials Science ; Conformal mapping ; Electric fields ; Electrons ; Environmental Chemistry ; Exact solutions ; Inorganic Chemistry ; Lasers ; Materials Science ; Modelling ; Optical Devices ; Optics ; Original Paper ; Photonics ; Poisson equation ; Polymer Sciences ; Silicon ; Threshold voltage ; Two dimensional models ; Work functions</subject><ispartof>SILICON, 2021-02, Vol.13 (2), p.375-387</ispartof><rights>Springer Nature B.V. 2020</rights><rights>Springer Nature B.V. 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e8be65ab7e261a16ca05bc6dcc885b9f30bdf3ccaf6fc0afc267b74ca68a76863</citedby><cites>FETCH-LOGICAL-c319t-e8be65ab7e261a16ca05bc6dcc885b9f30bdf3ccaf6fc0afc267b74ca68a76863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-020-00424-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919466171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Chattopadhyay, Ankush</creatorcontrib><creatorcontrib>Bose, Chayanika</creatorcontrib><creatorcontrib>Sarkar, Chandan K.</creatorcontrib><title>Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application</title><title>SILICON</title><addtitle>Silicon</addtitle><description>This paper presents an analytical modeling of a separated gate underlap graded N-channel FET to assess the short-channel effects. A 2D modeling scheme is employed to derive its surface potential, threshold voltage, subthreshold current and DIBL. The proposed structure includes four regions, and the potential function for each region is developed from solution of Poisson’s Equation using appropriate approximations. In order to estimate surface potential of the device, parabolic approximation scheme with geometrical approach is used in channel region to cater the influence of independently biased gates, while in source/drain underlap regions, conformal mapping is employed for the fringing field estimation. The study suggests that the independent gate bias, channel doping concentrations, spacer and other device parameters viz. underlap length, gate work function, gate oxide thickness etc. are efficacious in modulating the threshold voltage, subthreshold current and DIBL. The analytical results are compared with those obtained from TCAD device simulator, and found to match very closely. Moreover, the analytical solutions also follow the similar nature of variations as appeared in other experimental reports.</description><subject>Approximation</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Conformal mapping</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Environmental Chemistry</subject><subject>Exact solutions</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Modelling</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Poisson equation</subject><subject>Polymer Sciences</subject><subject>Silicon</subject><subject>Threshold voltage</subject><subject>Two dimensional models</subject><subject>Work functions</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kF9LwzAUxYsoOHRfwKeAr9YlaZe0j6PqHMw_MAe-hds06Tq6pCYdQ_zyRiv6Zh5uLvee87twouiC4GuCMZ94QlmSxJjiGOOUpjE9ikYk4yzOc5Id__b49TQae7_F4SWUZywfRR-F3XUge_RgK9U2pkZWo7mDSlXoMS42YIxq0cJUqlOhmB7NoVfo7vYFHZp-g9Zh6Fro_BVaBY5yCEyFVpMbtOod1HWrkLYOLe0BPdtDWM-6rm0k9I0159GJhtar8c9_Fq0Dt7iPl0_zRTFbxjIheR-rrFRsCiVXlBEgTAKelpJVUmbZtMx1gstKJ1KCZlpi0JIyXvJUAsuAs4wlZ9HlwO2cfdsr34ut3TsTTgqakzxljHASVHRQSWe9d0qLzjU7cO-CYPGVsxhyFiFn8Z2zoMGUDCYfxKZW7g_9j-sTe8qApw</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Chattopadhyay, Ankush</creator><creator>Bose, Chayanika</creator><creator>Sarkar, Chandan K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210201</creationdate><title>Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application</title><author>Chattopadhyay, Ankush ; Bose, Chayanika ; Sarkar, Chandan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e8be65ab7e261a16ca05bc6dcc885b9f30bdf3ccaf6fc0afc267b74ca68a76863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Conformal mapping</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Environmental Chemistry</topic><topic>Exact solutions</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Modelling</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Poisson equation</topic><topic>Polymer Sciences</topic><topic>Silicon</topic><topic>Threshold voltage</topic><topic>Two dimensional models</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chattopadhyay, Ankush</creatorcontrib><creatorcontrib>Bose, Chayanika</creatorcontrib><creatorcontrib>Sarkar, Chandan K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chattopadhyay, Ankush</au><au>Bose, Chayanika</au><au>Sarkar, Chandan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2021-02-01</date><risdate>2021</risdate><volume>13</volume><issue>2</issue><spage>375</spage><epage>387</epage><pages>375-387</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>This paper presents an analytical modeling of a separated gate underlap graded N-channel FET to assess the short-channel effects. A 2D modeling scheme is employed to derive its surface potential, threshold voltage, subthreshold current and DIBL. The proposed structure includes four regions, and the potential function for each region is developed from solution of Poisson’s Equation using appropriate approximations. In order to estimate surface potential of the device, parabolic approximation scheme with geometrical approach is used in channel region to cater the influence of independently biased gates, while in source/drain underlap regions, conformal mapping is employed for the fringing field estimation. The study suggests that the independent gate bias, channel doping concentrations, spacer and other device parameters viz. underlap length, gate work function, gate oxide thickness etc. are efficacious in modulating the threshold voltage, subthreshold current and DIBL. The analytical results are compared with those obtained from TCAD device simulator, and found to match very closely. Moreover, the analytical solutions also follow the similar nature of variations as appeared in other experimental reports.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-020-00424-2</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2021-02, Vol.13 (2), p.375-387
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2919466171
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Approximation
Chemistry
Chemistry and Materials Science
Conformal mapping
Electric fields
Electrons
Environmental Chemistry
Exact solutions
Inorganic Chemistry
Lasers
Materials Science
Modelling
Optical Devices
Optics
Original Paper
Photonics
Poisson equation
Polymer Sciences
Silicon
Threshold voltage
Two dimensional models
Work functions
title Compact Modeling of Graded N-Channel Independent Gate FET with Underlaps, Spacer and S/D Straggle for Low Power Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T01%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compact%20Modeling%20of%20Graded%20N-Channel%20Independent%20Gate%20FET%20with%20Underlaps,%20Spacer%20and%20S/D%20Straggle%20for%20Low%20Power%20Application&rft.jtitle=SILICON&rft.au=Chattopadhyay,%20Ankush&rft.date=2021-02-01&rft.volume=13&rft.issue=2&rft.spage=375&rft.epage=387&rft.pages=375-387&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-020-00424-2&rft_dat=%3Cproquest_cross%3E2919466171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919466171&rft_id=info:pmid/&rfr_iscdi=true