Multitask Learning for Complaint Identification and Sentiment Analysis

In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation 2022, Vol.14 (1), p.212-227
Hauptverfasser: Singh, Apoorva, Saha, Sriparna, Hasanuzzaman, Md, Dey, Kuntal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 227
container_issue 1
container_start_page 212
container_title Cognitive computation
container_volume 14
creator Singh, Apoorva
Saha, Sriparna
Hasanuzzaman, Md
Dey, Kuntal
description In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks, viz. complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.
doi_str_mv 10.1007/s12559-021-09844-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919451421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919451421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9WiSyXNZio9CxYW6DreZTEmdZmoyXfTfmzqiOzf3Xi7nHA4fQteU3FJC1F2mTAhTEUYrYjTnlTpBE6qlrIyR_PT3FvIcXeS8IUQKI9gEPTzvuyEMkD_w0kOKIa5x2yc877e7DkIc8KLxcQhtcDCEPmKIDX49frZl4FmE7pBDvkRnLXTZX_3sKXp_uH-bP1XLl8fFfLasXE3NUAGIlmlGmKYMVmzV1J5JqL2GlXKOqUbWrQEJnvNG6dbr0tF5R41qwJNG11N0M-buUv-593mwm36fSolsmaGGC8oZLSo2qlzqc06-tbsUtpAOlhJ75GVHXrbwst-8rCqmejTlIo5rn_6i_3F9ARIubrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919451421</pqid></control><display><type>article</type><title>Multitask Learning for Complaint Identification and Sentiment Analysis</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Singh, Apoorva ; Saha, Sriparna ; Hasanuzzaman, Md ; Dey, Kuntal</creator><creatorcontrib>Singh, Apoorva ; Saha, Sriparna ; Hasanuzzaman, Md ; Dey, Kuntal</creatorcontrib><description>In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&amp;D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks, viz. complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-021-09844-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>A Decade of Sentic Computing ; Artificial Intelligence ; Business competition ; Classification ; Complaints ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Computer Science ; Customer relationship management ; Customer satisfaction ; Customer services ; Data mining ; Datasets ; Deep learning ; Identification ; Labeling ; Learning ; Natural language ; Neural networks ; Sentiment analysis ; Text categorization</subject><ispartof>Cognitive computation, 2022, Vol.14 (1), p.212-227</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</citedby><cites>FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</cites><orcidid>0000-0002-2020-4751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-021-09844-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919451421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Singh, Apoorva</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Hasanuzzaman, Md</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><title>Multitask Learning for Complaint Identification and Sentiment Analysis</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&amp;D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks, viz. complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.</description><subject>A Decade of Sentic Computing</subject><subject>Artificial Intelligence</subject><subject>Business competition</subject><subject>Classification</subject><subject>Complaints</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Customer relationship management</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Identification</subject><subject>Labeling</subject><subject>Learning</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>Text categorization</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9WiSyXNZio9CxYW6DreZTEmdZmoyXfTfmzqiOzf3Xi7nHA4fQteU3FJC1F2mTAhTEUYrYjTnlTpBE6qlrIyR_PT3FvIcXeS8IUQKI9gEPTzvuyEMkD_w0kOKIa5x2yc877e7DkIc8KLxcQhtcDCEPmKIDX49frZl4FmE7pBDvkRnLXTZX_3sKXp_uH-bP1XLl8fFfLasXE3NUAGIlmlGmKYMVmzV1J5JqL2GlXKOqUbWrQEJnvNG6dbr0tF5R41qwJNG11N0M-buUv-593mwm36fSolsmaGGC8oZLSo2qlzqc06-tbsUtpAOlhJ75GVHXrbwst-8rCqmejTlIo5rn_6i_3F9ARIubrQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Singh, Apoorva</creator><creator>Saha, Sriparna</creator><creator>Hasanuzzaman, Md</creator><creator>Dey, Kuntal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2020-4751</orcidid></search><sort><creationdate>2022</creationdate><title>Multitask Learning for Complaint Identification and Sentiment Analysis</title><author>Singh, Apoorva ; Saha, Sriparna ; Hasanuzzaman, Md ; Dey, Kuntal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A Decade of Sentic Computing</topic><topic>Artificial Intelligence</topic><topic>Business competition</topic><topic>Classification</topic><topic>Complaints</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Customer relationship management</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Identification</topic><topic>Labeling</topic><topic>Learning</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Apoorva</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Hasanuzzaman, Md</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Apoorva</au><au>Saha, Sriparna</au><au>Hasanuzzaman, Md</au><au>Dey, Kuntal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask Learning for Complaint Identification and Sentiment Analysis</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>212</spage><epage>227</epage><pages>212-227</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&amp;D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks, viz. complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12559-021-09844-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2020-4751</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1866-9956
ispartof Cognitive computation, 2022, Vol.14 (1), p.212-227
issn 1866-9956
1866-9964
language eng
recordid cdi_proquest_journals_2919451421
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects A Decade of Sentic Computing
Artificial Intelligence
Business competition
Classification
Complaints
Computation by Abstract Devices
Computational Biology/Bioinformatics
Computer Science
Customer relationship management
Customer satisfaction
Customer services
Data mining
Datasets
Deep learning
Identification
Labeling
Learning
Natural language
Neural networks
Sentiment analysis
Text categorization
title Multitask Learning for Complaint Identification and Sentiment Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20Learning%20for%20Complaint%20Identification%20and%20Sentiment%20Analysis&rft.jtitle=Cognitive%20computation&rft.au=Singh,%20Apoorva&rft.date=2022&rft.volume=14&rft.issue=1&rft.spage=212&rft.epage=227&rft.pages=212-227&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-021-09844-7&rft_dat=%3Cproquest_cross%3E2919451421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919451421&rft_id=info:pmid/&rfr_iscdi=true