Multitask Learning for Complaint Identification and Sentiment Analysis
In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in...
Gespeichert in:
Veröffentlicht in: | Cognitive computation 2022, Vol.14 (1), p.212-227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | 1 |
container_start_page | 212 |
container_title | Cognitive computation |
container_volume | 14 |
creator | Singh, Apoorva Saha, Sriparna Hasanuzzaman, Md Dey, Kuntal |
description | In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks,
viz.
complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently. |
doi_str_mv | 10.1007/s12559-021-09844-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919451421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919451421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXA9WiSyXNZio9CxYW6DreZTEmdZmoyXfTfmzqiOzf3Xi7nHA4fQteU3FJC1F2mTAhTEUYrYjTnlTpBE6qlrIyR_PT3FvIcXeS8IUQKI9gEPTzvuyEMkD_w0kOKIa5x2yc877e7DkIc8KLxcQhtcDCEPmKIDX49frZl4FmE7pBDvkRnLXTZX_3sKXp_uH-bP1XLl8fFfLasXE3NUAGIlmlGmKYMVmzV1J5JqL2GlXKOqUbWrQEJnvNG6dbr0tF5R41qwJNG11N0M-buUv-593mwm36fSolsmaGGC8oZLSo2qlzqc06-tbsUtpAOlhJ75GVHXrbwst-8rCqmejTlIo5rn_6i_3F9ARIubrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919451421</pqid></control><display><type>article</type><title>Multitask Learning for Complaint Identification and Sentiment Analysis</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Singh, Apoorva ; Saha, Sriparna ; Hasanuzzaman, Md ; Dey, Kuntal</creator><creatorcontrib>Singh, Apoorva ; Saha, Sriparna ; Hasanuzzaman, Md ; Dey, Kuntal</creatorcontrib><description>In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks,
viz.
complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.</description><identifier>ISSN: 1866-9956</identifier><identifier>EISSN: 1866-9964</identifier><identifier>DOI: 10.1007/s12559-021-09844-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>A Decade of Sentic Computing ; Artificial Intelligence ; Business competition ; Classification ; Complaints ; Computation by Abstract Devices ; Computational Biology/Bioinformatics ; Computer Science ; Customer relationship management ; Customer satisfaction ; Customer services ; Data mining ; Datasets ; Deep learning ; Identification ; Labeling ; Learning ; Natural language ; Neural networks ; Sentiment analysis ; Text categorization</subject><ispartof>Cognitive computation, 2022, Vol.14 (1), p.212-227</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</citedby><cites>FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</cites><orcidid>0000-0002-2020-4751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12559-021-09844-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919451421?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Singh, Apoorva</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Hasanuzzaman, Md</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><title>Multitask Learning for Complaint Identification and Sentiment Analysis</title><title>Cognitive computation</title><addtitle>Cogn Comput</addtitle><description>In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks,
viz.
complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.</description><subject>A Decade of Sentic Computing</subject><subject>Artificial Intelligence</subject><subject>Business competition</subject><subject>Classification</subject><subject>Complaints</subject><subject>Computation by Abstract Devices</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Science</subject><subject>Customer relationship management</subject><subject>Customer satisfaction</subject><subject>Customer services</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Identification</subject><subject>Labeling</subject><subject>Learning</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Sentiment analysis</subject><subject>Text categorization</subject><issn>1866-9956</issn><issn>1866-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXA9WiSyXNZio9CxYW6DreZTEmdZmoyXfTfmzqiOzf3Xi7nHA4fQteU3FJC1F2mTAhTEUYrYjTnlTpBE6qlrIyR_PT3FvIcXeS8IUQKI9gEPTzvuyEMkD_w0kOKIa5x2yc877e7DkIc8KLxcQhtcDCEPmKIDX49frZl4FmE7pBDvkRnLXTZX_3sKXp_uH-bP1XLl8fFfLasXE3NUAGIlmlGmKYMVmzV1J5JqL2GlXKOqUbWrQEJnvNG6dbr0tF5R41qwJNG11N0M-buUv-593mwm36fSolsmaGGC8oZLSo2qlzqc06-tbsUtpAOlhJ75GVHXrbwst-8rCqmejTlIo5rn_6i_3F9ARIubrQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Singh, Apoorva</creator><creator>Saha, Sriparna</creator><creator>Hasanuzzaman, Md</creator><creator>Dey, Kuntal</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2020-4751</orcidid></search><sort><creationdate>2022</creationdate><title>Multitask Learning for Complaint Identification and Sentiment Analysis</title><author>Singh, Apoorva ; Saha, Sriparna ; Hasanuzzaman, Md ; Dey, Kuntal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-aa5f28202812ab2bd3e26a3e8ab7cc27d63f9a6ae44d78fe8952cec197dae0d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>A Decade of Sentic Computing</topic><topic>Artificial Intelligence</topic><topic>Business competition</topic><topic>Classification</topic><topic>Complaints</topic><topic>Computation by Abstract Devices</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Science</topic><topic>Customer relationship management</topic><topic>Customer satisfaction</topic><topic>Customer services</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Identification</topic><topic>Labeling</topic><topic>Learning</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Sentiment analysis</topic><topic>Text categorization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Apoorva</creatorcontrib><creatorcontrib>Saha, Sriparna</creatorcontrib><creatorcontrib>Hasanuzzaman, Md</creatorcontrib><creatorcontrib>Dey, Kuntal</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Cognitive computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Apoorva</au><au>Saha, Sriparna</au><au>Hasanuzzaman, Md</au><au>Dey, Kuntal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask Learning for Complaint Identification and Sentiment Analysis</atitle><jtitle>Cognitive computation</jtitle><stitle>Cogn Comput</stitle><date>2022</date><risdate>2022</risdate><volume>14</volume><issue>1</issue><spage>212</spage><epage>227</epage><pages>212-227</pages><issn>1866-9956</issn><eissn>1866-9964</eissn><abstract>In today’s competitive business world, customer service is often at the heart of businesses that can help strengthen their brands. Resolution of customers’ complaints in a timely and efficient manner is key to improving customer satisfaction. Moreover, customers’ complaints play an important role in identifying their requirements which offer a starting point for effective and efficient planning of companies’ overall R&D and new product or service development activities. Having said that, organizations encounter challenges towards automatically identifying complaints buried deep in massive online content. Our current work centers around learning two closely related tasks,
viz.
complaint identification and sentiment classification. We leverage weak supervision to annotate the corpus with sentiment labels. We propose a deep multitask framework that features a knowledge element that uses AffectiveSpace to infuse commonsense knowledge specific features into the learning process. The framework models complaint identification (the primary task) and sentiment classification (supplementary task) simultaneously. Experimental results show that our proposed multitask system obtains the highest cross-validation accuracy of 83.73 +/- 1.52 % for the complaint identification task and 69.01 +/- 1.74 % for the sentiment classification task. Our proposed multitask system outperforms the single-task systems indicating a strong correlation between sentiment analysis and complaint classification tasks, thus benefiting from each other when learned concurrently.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12559-021-09844-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2020-4751</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-9956 |
ispartof | Cognitive computation, 2022, Vol.14 (1), p.212-227 |
issn | 1866-9956 1866-9964 |
language | eng |
recordid | cdi_proquest_journals_2919451421 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | A Decade of Sentic Computing Artificial Intelligence Business competition Classification Complaints Computation by Abstract Devices Computational Biology/Bioinformatics Computer Science Customer relationship management Customer satisfaction Customer services Data mining Datasets Deep learning Identification Labeling Learning Natural language Neural networks Sentiment analysis Text categorization |
title | Multitask Learning for Complaint Identification and Sentiment Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20Learning%20for%20Complaint%20Identification%20and%20Sentiment%20Analysis&rft.jtitle=Cognitive%20computation&rft.au=Singh,%20Apoorva&rft.date=2022&rft.volume=14&rft.issue=1&rft.spage=212&rft.epage=227&rft.pages=212-227&rft.issn=1866-9956&rft.eissn=1866-9964&rft_id=info:doi/10.1007/s12559-021-09844-7&rft_dat=%3Cproquest_cross%3E2919451421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919451421&rft_id=info:pmid/&rfr_iscdi=true |