Structure and Properties of Metallurgical-grade Silicon

The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SILICON 2018-09, Vol.10 (5), p.2201-2210
Hauptverfasser: Zhilkashinova, A. M., Kabdrakhmanova, S. K., Troyeglazova, A. V., Abilev, M. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2210
container_issue 5
container_start_page 2201
container_title SILICON
container_volume 10
creator Zhilkashinova, A. M.
Kabdrakhmanova, S. K.
Troyeglazova, A. V.
Abilev, M. B.
description The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.
doi_str_mv 10.1007/s12633-017-9751-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919439325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919439325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPEczTZuPoyx-gaKwCt5C2k6WLrVdJ-3Bf2-Wip6cy8zhed-Bh7FzEJcghL6KkCspuQDNrS6BqyO2AKMVtxbM8e8t3k_ZKsadSCNzbZRdML0ZaarHiTDzfZO90LBHGluM2RCyJxx91020bWvf8S35BrNN27X10J-xk-C7iKufvWRvtzev63v--Hz3sL5-5LUENXKjQhkKbwSqYOHwFFQZtNHaFyhljhZKaYT1RSMaoSusKiUrjV5XiUGUS3Yx9-5p-Jwwjm43TNSnly63YAtpZV4mCmaqpiFGwuD21H54-nIg3EGRmxW5pMgdFDmVMvmciYntt0h_zf-HvgFy72fo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919439325</pqid></control><display><type>article</type><title>Structure and Properties of Metallurgical-grade Silicon</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhilkashinova, A. M. ; Kabdrakhmanova, S. K. ; Troyeglazova, A. V. ; Abilev, M. B.</creator><creatorcontrib>Zhilkashinova, A. M. ; Kabdrakhmanova, S. K. ; Troyeglazova, A. V. ; Abilev, M. B.</creatorcontrib><description>The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-017-9751-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Crystal defects ; Electrical resistivity ; Environmental Chemistry ; Grain boundaries ; Grain size ; Impurities ; Inorganic Chemistry ; Lasers ; Materials Science ; Mechanical properties ; Metallurgical analysis ; Optical Devices ; Optics ; Original Paper ; Photonics ; Photovoltaic cells ; Plasma arc melting ; Polymer Sciences ; Raw materials ; Silicides ; Silicon ; Solar cells</subject><ispartof>SILICON, 2018-09, Vol.10 (5), p.2201-2210</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Springer Science+Business Media B.V., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</citedby><cites>FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</cites><orcidid>0000-0002-8776-1333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-017-9751-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919439325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Zhilkashinova, A. M.</creatorcontrib><creatorcontrib>Kabdrakhmanova, S. K.</creatorcontrib><creatorcontrib>Troyeglazova, A. V.</creatorcontrib><creatorcontrib>Abilev, M. B.</creatorcontrib><title>Structure and Properties of Metallurgical-grade Silicon</title><title>SILICON</title><addtitle>Silicon</addtitle><description>The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal defects</subject><subject>Electrical resistivity</subject><subject>Environmental Chemistry</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Impurities</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallurgical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Plasma arc melting</subject><subject>Polymer Sciences</subject><subject>Raw materials</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wVPEczTZuPoyx-gaKwCt5C2k6WLrVdJ-3Bf2-Wip6cy8zhed-Bh7FzEJcghL6KkCspuQDNrS6BqyO2AKMVtxbM8e8t3k_ZKsadSCNzbZRdML0ZaarHiTDzfZO90LBHGluM2RCyJxx91020bWvf8S35BrNN27X10J-xk-C7iKufvWRvtzev63v--Hz3sL5-5LUENXKjQhkKbwSqYOHwFFQZtNHaFyhljhZKaYT1RSMaoSusKiUrjV5XiUGUS3Yx9-5p-Jwwjm43TNSnly63YAtpZV4mCmaqpiFGwuD21H54-nIg3EGRmxW5pMgdFDmVMvmciYntt0h_zf-HvgFy72fo</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Zhilkashinova, A. M.</creator><creator>Kabdrakhmanova, S. K.</creator><creator>Troyeglazova, A. V.</creator><creator>Abilev, M. B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8776-1333</orcidid></search><sort><creationdate>20180901</creationdate><title>Structure and Properties of Metallurgical-grade Silicon</title><author>Zhilkashinova, A. M. ; Kabdrakhmanova, S. K. ; Troyeglazova, A. V. ; Abilev, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal defects</topic><topic>Electrical resistivity</topic><topic>Environmental Chemistry</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Impurities</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallurgical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Plasma arc melting</topic><topic>Polymer Sciences</topic><topic>Raw materials</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhilkashinova, A. M.</creatorcontrib><creatorcontrib>Kabdrakhmanova, S. K.</creatorcontrib><creatorcontrib>Troyeglazova, A. V.</creatorcontrib><creatorcontrib>Abilev, M. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhilkashinova, A. M.</au><au>Kabdrakhmanova, S. K.</au><au>Troyeglazova, A. V.</au><au>Abilev, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Properties of Metallurgical-grade Silicon</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>10</volume><issue>5</issue><spage>2201</spage><epage>2210</epage><pages>2201-2210</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-017-9751-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8776-1333</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1876-990X
ispartof SILICON, 2018-09, Vol.10 (5), p.2201-2210
issn 1876-990X
1876-9918
language eng
recordid cdi_proquest_journals_2919439325
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Chemistry
Chemistry and Materials Science
Crystal defects
Electrical resistivity
Environmental Chemistry
Grain boundaries
Grain size
Impurities
Inorganic Chemistry
Lasers
Materials Science
Mechanical properties
Metallurgical analysis
Optical Devices
Optics
Original Paper
Photonics
Photovoltaic cells
Plasma arc melting
Polymer Sciences
Raw materials
Silicides
Silicon
Solar cells
title Structure and Properties of Metallurgical-grade Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Properties%20of%20Metallurgical-grade%20Silicon&rft.jtitle=SILICON&rft.au=Zhilkashinova,%20A.%20M.&rft.date=2018-09-01&rft.volume=10&rft.issue=5&rft.spage=2201&rft.epage=2210&rft.pages=2201-2210&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-017-9751-6&rft_dat=%3Cproquest_cross%3E2919439325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919439325&rft_id=info:pmid/&rfr_iscdi=true