Structure and Properties of Metallurgical-grade Silicon
The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the...
Gespeichert in:
Veröffentlicht in: | SILICON 2018-09, Vol.10 (5), p.2201-2210 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2210 |
---|---|
container_issue | 5 |
container_start_page | 2201 |
container_title | SILICON |
container_volume | 10 |
creator | Zhilkashinova, A. M. Kabdrakhmanova, S. K. Troyeglazova, A. V. Abilev, M. B. |
description | The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications. |
doi_str_mv | 10.1007/s12633-017-9751-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919439325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919439325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPEczTZuPoyx-gaKwCt5C2k6WLrVdJ-3Bf2-Wip6cy8zhed-Bh7FzEJcghL6KkCspuQDNrS6BqyO2AKMVtxbM8e8t3k_ZKsadSCNzbZRdML0ZaarHiTDzfZO90LBHGluM2RCyJxx91020bWvf8S35BrNN27X10J-xk-C7iKufvWRvtzev63v--Hz3sL5-5LUENXKjQhkKbwSqYOHwFFQZtNHaFyhljhZKaYT1RSMaoSusKiUrjV5XiUGUS3Yx9-5p-Jwwjm43TNSnly63YAtpZV4mCmaqpiFGwuD21H54-nIg3EGRmxW5pMgdFDmVMvmciYntt0h_zf-HvgFy72fo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919439325</pqid></control><display><type>article</type><title>Structure and Properties of Metallurgical-grade Silicon</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhilkashinova, A. M. ; Kabdrakhmanova, S. K. ; Troyeglazova, A. V. ; Abilev, M. B.</creator><creatorcontrib>Zhilkashinova, A. M. ; Kabdrakhmanova, S. K. ; Troyeglazova, A. V. ; Abilev, M. B.</creatorcontrib><description>The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.</description><identifier>ISSN: 1876-990X</identifier><identifier>EISSN: 1876-9918</identifier><identifier>DOI: 10.1007/s12633-017-9751-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Crystal defects ; Electrical resistivity ; Environmental Chemistry ; Grain boundaries ; Grain size ; Impurities ; Inorganic Chemistry ; Lasers ; Materials Science ; Mechanical properties ; Metallurgical analysis ; Optical Devices ; Optics ; Original Paper ; Photonics ; Photovoltaic cells ; Plasma arc melting ; Polymer Sciences ; Raw materials ; Silicides ; Silicon ; Solar cells</subject><ispartof>SILICON, 2018-09, Vol.10 (5), p.2201-2210</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Springer Science+Business Media B.V., part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</citedby><cites>FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</cites><orcidid>0000-0002-8776-1333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12633-017-9751-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919439325?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Zhilkashinova, A. M.</creatorcontrib><creatorcontrib>Kabdrakhmanova, S. K.</creatorcontrib><creatorcontrib>Troyeglazova, A. V.</creatorcontrib><creatorcontrib>Abilev, M. B.</creatorcontrib><title>Structure and Properties of Metallurgical-grade Silicon</title><title>SILICON</title><addtitle>Silicon</addtitle><description>The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal defects</subject><subject>Electrical resistivity</subject><subject>Environmental Chemistry</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Impurities</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Metallurgical analysis</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Original Paper</subject><subject>Photonics</subject><subject>Photovoltaic cells</subject><subject>Plasma arc melting</subject><subject>Polymer Sciences</subject><subject>Raw materials</subject><subject>Silicides</subject><subject>Silicon</subject><subject>Solar cells</subject><issn>1876-990X</issn><issn>1876-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wVPEczTZuPoyx-gaKwCt5C2k6WLrVdJ-3Bf2-Wip6cy8zhed-Bh7FzEJcghL6KkCspuQDNrS6BqyO2AKMVtxbM8e8t3k_ZKsadSCNzbZRdML0ZaarHiTDzfZO90LBHGluM2RCyJxx91020bWvf8S35BrNN27X10J-xk-C7iKufvWRvtzev63v--Hz3sL5-5LUENXKjQhkKbwSqYOHwFFQZtNHaFyhljhZKaYT1RSMaoSusKiUrjV5XiUGUS3Yx9-5p-Jwwjm43TNSnly63YAtpZV4mCmaqpiFGwuD21H54-nIg3EGRmxW5pMgdFDmVMvmciYntt0h_zf-HvgFy72fo</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Zhilkashinova, A. M.</creator><creator>Kabdrakhmanova, S. K.</creator><creator>Troyeglazova, A. V.</creator><creator>Abilev, M. B.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8776-1333</orcidid></search><sort><creationdate>20180901</creationdate><title>Structure and Properties of Metallurgical-grade Silicon</title><author>Zhilkashinova, A. M. ; Kabdrakhmanova, S. K. ; Troyeglazova, A. V. ; Abilev, M. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86f5f4a80e6f913278165f7877a4e332e9153809a4d0d07bebb63b7ea7b877ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal defects</topic><topic>Electrical resistivity</topic><topic>Environmental Chemistry</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Impurities</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Metallurgical analysis</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Original Paper</topic><topic>Photonics</topic><topic>Photovoltaic cells</topic><topic>Plasma arc melting</topic><topic>Polymer Sciences</topic><topic>Raw materials</topic><topic>Silicides</topic><topic>Silicon</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhilkashinova, A. M.</creatorcontrib><creatorcontrib>Kabdrakhmanova, S. K.</creatorcontrib><creatorcontrib>Troyeglazova, A. V.</creatorcontrib><creatorcontrib>Abilev, M. B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SILICON</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhilkashinova, A. M.</au><au>Kabdrakhmanova, S. K.</au><au>Troyeglazova, A. V.</au><au>Abilev, M. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Properties of Metallurgical-grade Silicon</atitle><jtitle>SILICON</jtitle><stitle>Silicon</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>10</volume><issue>5</issue><spage>2201</spage><epage>2210</epage><pages>2201-2210</pages><issn>1876-990X</issn><eissn>1876-9918</eissn><abstract>The main raw material for the production of solar-grade silicon used in the production of photovoltaic energy converters for solar cells is metallurgical silicon. When choosing any technology for the production of solar-grade silicon, special attention should be given to improving the quality of the initial MG-Si. The aim of this work was to study the structure and properties of metallurgical silicon. Samples of MG-Si were prepared in laboratory conditions. Samples, obtained by plasma-arc melting in the furnace with graphite electrodes, contained admissible impurity limits. The structure and physico-mechanical properties of MG-Si with different content of impurities were studied in a wide range. The electrical resistivity index depended on the presence of grain boundaries and the level of impurity elements content, as well as the presence of carbides and silicides. At the maximum grain size of 105.58 μm, the maximum value of the electrical resistivity of 2.65 Ohm⋅cm was observed. The size and shape of the grains also had an effect on mechanical properties. Selection of the optimal composition of all components, as well as the conditions of the melting, allowed to achieve a defect-free structure. Such MG-Si samples can be used for various practical applications.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12633-017-9751-6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8776-1333</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1876-990X |
ispartof | SILICON, 2018-09, Vol.10 (5), p.2201-2210 |
issn | 1876-990X 1876-9918 |
language | eng |
recordid | cdi_proquest_journals_2919439325 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Chemistry Chemistry and Materials Science Crystal defects Electrical resistivity Environmental Chemistry Grain boundaries Grain size Impurities Inorganic Chemistry Lasers Materials Science Mechanical properties Metallurgical analysis Optical Devices Optics Original Paper Photonics Photovoltaic cells Plasma arc melting Polymer Sciences Raw materials Silicides Silicon Solar cells |
title | Structure and Properties of Metallurgical-grade Silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Properties%20of%20Metallurgical-grade%20Silicon&rft.jtitle=SILICON&rft.au=Zhilkashinova,%20A.%20M.&rft.date=2018-09-01&rft.volume=10&rft.issue=5&rft.spage=2201&rft.epage=2210&rft.pages=2201-2210&rft.issn=1876-990X&rft.eissn=1876-9918&rft_id=info:doi/10.1007/s12633-017-9751-6&rft_dat=%3Cproquest_cross%3E2919439325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919439325&rft_id=info:pmid/&rfr_iscdi=true |