Image fusion using online convolutional sparse coding

As signal enhancement technique, image fusion alleviates limitation single sensor in terms to information presentation and enhance visual quality. Extracting affluent features to accurately represent image is crucial for fusion. However, filters via convolutional sparse coding (CSC) have disadvantag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2023-10, Vol.14 (10), p.13559-13570
Hauptverfasser: Zhang, Chengfang, Zhang, Ziyou, Feng, Ziliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13570
container_issue 10
container_start_page 13559
container_title Journal of ambient intelligence and humanized computing
container_volume 14
creator Zhang, Chengfang
Zhang, Ziyou
Feng, Ziliang
description As signal enhancement technique, image fusion alleviates limitation single sensor in terms to information presentation and enhance visual quality. Extracting affluent features to accurately represent image is crucial for fusion. However, filters via convolutional sparse coding (CSC) have disadvantages of heavy computation cost and low representation. Superior signal representation and low spatial complexity of online convolutional sparse coding are exploited to image fusion to compensate for shortcomings of CSC. The detail and low-frequency components of source images are firstly decomposed using two-layer decomposition. Then each layers use rules to obtain fused components. Finally, fused image can be reconstructed by both high-frequency and low-frequency layers. To verify performance of proposed method, 9 infrared-visible fusion methods and 5 medical fusion methods are used as comparison experiments. The quantitative ( Q ABF , Q E , Q M and Q P ) assessments confirm superiority of method. In addition, qualitative results exhibit powerful information preservation and better visualization.
doi_str_mv 10.1007/s12652-022-03822-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919364763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919364763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234z-3f410422fcc011ac6ccbccc187d9e868183d83f57d83b7d6bfd683a367570c4d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0DnhY8r2Yyu0n2KMWPQsGLnkOaTUrLdlOTrmB_vVNX9ObAvBlm3huGx9g18FvgXN1lELIWJReUqAmPZ2wCWuqyhqo-_-1RXbJZzltOgQ0CwITVi51d-yIMeRP7grBfF7HvNr0vXOw_YjccaGG7Iu9tyqdhS5QrdhFsl_3sp07Z2-PD6_y5XL48Leb3y9IJrI4lhgp4JURwjgNYJ51bOedAq7bx9BNobDWGWhGuVCtXoZUaLUpVK-6qFqfsZry7T_F98PlgtnFI9E42ooEGZaUkEkuMLJdizskHs0-bnU2fBrg5OWRGhww5ZL4dMkcS4SjKRO7XPv2d_kf1BTjUaOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919364763</pqid></control><display><type>article</type><title>Image fusion using online convolutional sparse coding</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Zhang, Chengfang ; Zhang, Ziyou ; Feng, Ziliang</creator><creatorcontrib>Zhang, Chengfang ; Zhang, Ziyou ; Feng, Ziliang</creatorcontrib><description>As signal enhancement technique, image fusion alleviates limitation single sensor in terms to information presentation and enhance visual quality. Extracting affluent features to accurately represent image is crucial for fusion. However, filters via convolutional sparse coding (CSC) have disadvantages of heavy computation cost and low representation. Superior signal representation and low spatial complexity of online convolutional sparse coding are exploited to image fusion to compensate for shortcomings of CSC. The detail and low-frequency components of source images are firstly decomposed using two-layer decomposition. Then each layers use rules to obtain fused components. Finally, fused image can be reconstructed by both high-frequency and low-frequency layers. To verify performance of proposed method, 9 infrared-visible fusion methods and 5 medical fusion methods are used as comparison experiments. The quantitative ( Q ABF , Q E , Q M and Q P ) assessments confirm superiority of method. In addition, qualitative results exhibit powerful information preservation and better visualization.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-022-03822-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Computer vision ; Decomposition ; Deep learning ; Design ; Dictionaries ; Distance learning ; Engineering ; Image coding ; Image enhancement ; Image reconstruction ; Magnetic resonance imaging ; Mathematical models ; Medical research ; Methods ; Neural networks ; Optimization ; Original Research ; Representations ; Robotics and Automation ; User Interfaces and Human Computer Interaction ; Wavelet transforms</subject><ispartof>Journal of ambient intelligence and humanized computing, 2023-10, Vol.14 (10), p.13559-13570</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234z-3f410422fcc011ac6ccbccc187d9e868183d83f57d83b7d6bfd683a367570c4d3</citedby><cites>FETCH-LOGICAL-c234z-3f410422fcc011ac6ccbccc187d9e868183d83f57d83b7d6bfd683a367570c4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-022-03822-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2919364763?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Chengfang</creatorcontrib><creatorcontrib>Zhang, Ziyou</creatorcontrib><creatorcontrib>Feng, Ziliang</creatorcontrib><title>Image fusion using online convolutional sparse coding</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>As signal enhancement technique, image fusion alleviates limitation single sensor in terms to information presentation and enhance visual quality. Extracting affluent features to accurately represent image is crucial for fusion. However, filters via convolutional sparse coding (CSC) have disadvantages of heavy computation cost and low representation. Superior signal representation and low spatial complexity of online convolutional sparse coding are exploited to image fusion to compensate for shortcomings of CSC. The detail and low-frequency components of source images are firstly decomposed using two-layer decomposition. Then each layers use rules to obtain fused components. Finally, fused image can be reconstructed by both high-frequency and low-frequency layers. To verify performance of proposed method, 9 infrared-visible fusion methods and 5 medical fusion methods are used as comparison experiments. The quantitative ( Q ABF , Q E , Q M and Q P ) assessments confirm superiority of method. In addition, qualitative results exhibit powerful information preservation and better visualization.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Computer vision</subject><subject>Decomposition</subject><subject>Deep learning</subject><subject>Design</subject><subject>Dictionaries</subject><subject>Distance learning</subject><subject>Engineering</subject><subject>Image coding</subject><subject>Image enhancement</subject><subject>Image reconstruction</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Representations</subject><subject>Robotics and Automation</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wavelet transforms</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UE1LAzEQDaJgqf0DnhY8r2Yyu0n2KMWPQsGLnkOaTUrLdlOTrmB_vVNX9ObAvBlm3huGx9g18FvgXN1lELIWJReUqAmPZ2wCWuqyhqo-_-1RXbJZzltOgQ0CwITVi51d-yIMeRP7grBfF7HvNr0vXOw_YjccaGG7Iu9tyqdhS5QrdhFsl_3sp07Z2-PD6_y5XL48Leb3y9IJrI4lhgp4JURwjgNYJ51bOedAq7bx9BNobDWGWhGuVCtXoZUaLUpVK-6qFqfsZry7T_F98PlgtnFI9E42ooEGZaUkEkuMLJdizskHs0-bnU2fBrg5OWRGhww5ZL4dMkcS4SjKRO7XPv2d_kf1BTjUaOU</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Zhang, Chengfang</creator><creator>Zhang, Ziyou</creator><creator>Feng, Ziliang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20231001</creationdate><title>Image fusion using online convolutional sparse coding</title><author>Zhang, Chengfang ; Zhang, Ziyou ; Feng, Ziliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234z-3f410422fcc011ac6ccbccc187d9e868183d83f57d83b7d6bfd683a367570c4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Computer vision</topic><topic>Decomposition</topic><topic>Deep learning</topic><topic>Design</topic><topic>Dictionaries</topic><topic>Distance learning</topic><topic>Engineering</topic><topic>Image coding</topic><topic>Image enhancement</topic><topic>Image reconstruction</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Representations</topic><topic>Robotics and Automation</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chengfang</creatorcontrib><creatorcontrib>Zhang, Ziyou</creatorcontrib><creatorcontrib>Feng, Ziliang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chengfang</au><au>Zhang, Ziyou</au><au>Feng, Ziliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image fusion using online convolutional sparse coding</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>14</volume><issue>10</issue><spage>13559</spage><epage>13570</epage><pages>13559-13570</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>As signal enhancement technique, image fusion alleviates limitation single sensor in terms to information presentation and enhance visual quality. Extracting affluent features to accurately represent image is crucial for fusion. However, filters via convolutional sparse coding (CSC) have disadvantages of heavy computation cost and low representation. Superior signal representation and low spatial complexity of online convolutional sparse coding are exploited to image fusion to compensate for shortcomings of CSC. The detail and low-frequency components of source images are firstly decomposed using two-layer decomposition. Then each layers use rules to obtain fused components. Finally, fused image can be reconstructed by both high-frequency and low-frequency layers. To verify performance of proposed method, 9 infrared-visible fusion methods and 5 medical fusion methods are used as comparison experiments. The quantitative ( Q ABF , Q E , Q M and Q P ) assessments confirm superiority of method. In addition, qualitative results exhibit powerful information preservation and better visualization.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-022-03822-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2023-10, Vol.14 (10), p.13559-13570
issn 1868-5137
1868-5145
language eng
recordid cdi_proquest_journals_2919364763
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Computer vision
Decomposition
Deep learning
Design
Dictionaries
Distance learning
Engineering
Image coding
Image enhancement
Image reconstruction
Magnetic resonance imaging
Mathematical models
Medical research
Methods
Neural networks
Optimization
Original Research
Representations
Robotics and Automation
User Interfaces and Human Computer Interaction
Wavelet transforms
title Image fusion using online convolutional sparse coding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A17%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20fusion%20using%20online%20convolutional%20sparse%20coding&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Zhang,%20Chengfang&rft.date=2023-10-01&rft.volume=14&rft.issue=10&rft.spage=13559&rft.epage=13570&rft.pages=13559-13570&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-022-03822-z&rft_dat=%3Cproquest_cross%3E2919364763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919364763&rft_id=info:pmid/&rfr_iscdi=true