Using normalized echo state network to detect abnormal ECG patterns
Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time...
Gespeichert in:
Veröffentlicht in: | International journal of imaging systems and technology 2024-01, Vol.34 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of imaging systems and technology |
container_volume | 34 |
creator | Wang, Shenglun Ding, Chun Wang, Zhaoze Shen, Lu Wang, Junsong |
description | Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model. |
doi_str_mv | 10.1002/ima.22940 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919335337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919335337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</originalsourceid><addsrcrecordid>eNp10MFOAjEQBuDGaCKiB9-giScPC-3slrZHskEkwXiRc1N2p7oIW2xLCD69i-vVy0wm-WYm-Qm552zEGYNxs7MjAF2wCzLgTKvsXC7JgCmtM10IeU1uYtwwxrlgYkDKVWzad9r6sLPb5htritWHpzHZhLTFdPThkyZPa0xYJWrXvaSzck73NiUMbbwlV85uI9799SFZPc3eyuds-TpflNNlVuWCs0yCckpaDhKBM15rXSNY7YABrjkAuspKgTWuJ3ICrpKq5koUVghXgJoU-ZA89Hf3wX8dMCaz8YfQdi8NaK7zXOS57NRjr6rgYwzozD50qYST4cycMzLdZH4z6uy4t8dmi6f_oVm8TPuNH6AIZxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919335337</pqid></control><display><type>article</type><title>Using normalized echo state network to detect abnormal ECG patterns</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Shenglun ; Ding, Chun ; Wang, Zhaoze ; Shen, Lu ; Wang, Junsong</creator><creatorcontrib>Wang, Shenglun ; Ding, Chun ; Wang, Zhaoze ; Shen, Lu ; Wang, Junsong</creatorcontrib><description>Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22940</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>abnormal ECG patterns ; ECG ; Electrocardiography ; Heart diseases ; normalized echo state network ; Performance evaluation ; reservoir parameters ; Rings (mathematics) ; Topology</subject><ispartof>International journal of imaging systems and technology, 2024-01, Vol.34 (1), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</citedby><cites>FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</cites><orcidid>0000-0001-7897-5412 ; 0000-0002-2002-7118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wang, Shenglun</creatorcontrib><creatorcontrib>Ding, Chun</creatorcontrib><creatorcontrib>Wang, Zhaoze</creatorcontrib><creatorcontrib>Shen, Lu</creatorcontrib><creatorcontrib>Wang, Junsong</creatorcontrib><title>Using normalized echo state network to detect abnormal ECG patterns</title><title>International journal of imaging systems and technology</title><description>Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.</description><subject>abnormal ECG patterns</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Heart diseases</subject><subject>normalized echo state network</subject><subject>Performance evaluation</subject><subject>reservoir parameters</subject><subject>Rings (mathematics)</subject><subject>Topology</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MFOAjEQBuDGaCKiB9-giScPC-3slrZHskEkwXiRc1N2p7oIW2xLCD69i-vVy0wm-WYm-Qm552zEGYNxs7MjAF2wCzLgTKvsXC7JgCmtM10IeU1uYtwwxrlgYkDKVWzad9r6sLPb5htritWHpzHZhLTFdPThkyZPa0xYJWrXvaSzck73NiUMbbwlV85uI9799SFZPc3eyuds-TpflNNlVuWCs0yCckpaDhKBM15rXSNY7YABrjkAuspKgTWuJ3ICrpKq5koUVghXgJoU-ZA89Hf3wX8dMCaz8YfQdi8NaK7zXOS57NRjr6rgYwzozD50qYST4cycMzLdZH4z6uy4t8dmi6f_oVm8TPuNH6AIZxM</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Wang, Shenglun</creator><creator>Ding, Chun</creator><creator>Wang, Zhaoze</creator><creator>Shen, Lu</creator><creator>Wang, Junsong</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7897-5412</orcidid><orcidid>https://orcid.org/0000-0002-2002-7118</orcidid></search><sort><creationdate>202401</creationdate><title>Using normalized echo state network to detect abnormal ECG patterns</title><author>Wang, Shenglun ; Ding, Chun ; Wang, Zhaoze ; Shen, Lu ; Wang, Junsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>abnormal ECG patterns</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Heart diseases</topic><topic>normalized echo state network</topic><topic>Performance evaluation</topic><topic>reservoir parameters</topic><topic>Rings (mathematics)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shenglun</creatorcontrib><creatorcontrib>Ding, Chun</creatorcontrib><creatorcontrib>Wang, Zhaoze</creatorcontrib><creatorcontrib>Shen, Lu</creatorcontrib><creatorcontrib>Wang, Junsong</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shenglun</au><au>Ding, Chun</au><au>Wang, Zhaoze</au><au>Shen, Lu</au><au>Wang, Junsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using normalized echo state network to detect abnormal ECG patterns</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ima.22940</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7897-5412</orcidid><orcidid>https://orcid.org/0000-0002-2002-7118</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9457 |
ispartof | International journal of imaging systems and technology, 2024-01, Vol.34 (1), p.n/a |
issn | 0899-9457 1098-1098 |
language | eng |
recordid | cdi_proquest_journals_2919335337 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | abnormal ECG patterns ECG Electrocardiography Heart diseases normalized echo state network Performance evaluation reservoir parameters Rings (mathematics) Topology |
title | Using normalized echo state network to detect abnormal ECG patterns |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20normalized%20echo%20state%20network%20to%20detect%20abnormal%20ECG%20patterns&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Wang,%20Shenglun&rft.date=2024-01&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22940&rft_dat=%3Cproquest_cross%3E2919335337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919335337&rft_id=info:pmid/&rfr_iscdi=true |