Using normalized echo state network to detect abnormal ECG patterns

Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology 2024-01, Vol.34 (1), p.n/a
Hauptverfasser: Wang, Shenglun, Ding, Chun, Wang, Zhaoze, Shen, Lu, Wang, Junsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title International journal of imaging systems and technology
container_volume 34
creator Wang, Shenglun
Ding, Chun
Wang, Zhaoze
Shen, Lu
Wang, Junsong
description Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.
doi_str_mv 10.1002/ima.22940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919335337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919335337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</originalsourceid><addsrcrecordid>eNp10MFOAjEQBuDGaCKiB9-giScPC-3slrZHskEkwXiRc1N2p7oIW2xLCD69i-vVy0wm-WYm-Qm552zEGYNxs7MjAF2wCzLgTKvsXC7JgCmtM10IeU1uYtwwxrlgYkDKVWzad9r6sLPb5htritWHpzHZhLTFdPThkyZPa0xYJWrXvaSzck73NiUMbbwlV85uI9799SFZPc3eyuds-TpflNNlVuWCs0yCckpaDhKBM15rXSNY7YABrjkAuspKgTWuJ3ICrpKq5koUVghXgJoU-ZA89Hf3wX8dMCaz8YfQdi8NaK7zXOS57NRjr6rgYwzozD50qYST4cycMzLdZH4z6uy4t8dmi6f_oVm8TPuNH6AIZxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919335337</pqid></control><display><type>article</type><title>Using normalized echo state network to detect abnormal ECG patterns</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Wang, Shenglun ; Ding, Chun ; Wang, Zhaoze ; Shen, Lu ; Wang, Junsong</creator><creatorcontrib>Wang, Shenglun ; Ding, Chun ; Wang, Zhaoze ; Shen, Lu ; Wang, Junsong</creatorcontrib><description>Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22940</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>abnormal ECG patterns ; ECG ; Electrocardiography ; Heart diseases ; normalized echo state network ; Performance evaluation ; reservoir parameters ; Rings (mathematics) ; Topology</subject><ispartof>International journal of imaging systems and technology, 2024-01, Vol.34 (1), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><rights>2024 Wiley Periodicals, LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</citedby><cites>FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</cites><orcidid>0000-0001-7897-5412 ; 0000-0002-2002-7118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wang, Shenglun</creatorcontrib><creatorcontrib>Ding, Chun</creatorcontrib><creatorcontrib>Wang, Zhaoze</creatorcontrib><creatorcontrib>Shen, Lu</creatorcontrib><creatorcontrib>Wang, Junsong</creatorcontrib><title>Using normalized echo state network to detect abnormal ECG patterns</title><title>International journal of imaging systems and technology</title><description>Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.</description><subject>abnormal ECG patterns</subject><subject>ECG</subject><subject>Electrocardiography</subject><subject>Heart diseases</subject><subject>normalized echo state network</subject><subject>Performance evaluation</subject><subject>reservoir parameters</subject><subject>Rings (mathematics)</subject><subject>Topology</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MFOAjEQBuDGaCKiB9-giScPC-3slrZHskEkwXiRc1N2p7oIW2xLCD69i-vVy0wm-WYm-Qm552zEGYNxs7MjAF2wCzLgTKvsXC7JgCmtM10IeU1uYtwwxrlgYkDKVWzad9r6sLPb5htritWHpzHZhLTFdPThkyZPa0xYJWrXvaSzck73NiUMbbwlV85uI9799SFZPc3eyuds-TpflNNlVuWCs0yCckpaDhKBM15rXSNY7YABrjkAuspKgTWuJ3ICrpKq5koUVghXgJoU-ZA89Hf3wX8dMCaz8YfQdi8NaK7zXOS57NRjr6rgYwzozD50qYST4cycMzLdZH4z6uy4t8dmi6f_oVm8TPuNH6AIZxM</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Wang, Shenglun</creator><creator>Ding, Chun</creator><creator>Wang, Zhaoze</creator><creator>Shen, Lu</creator><creator>Wang, Junsong</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7897-5412</orcidid><orcidid>https://orcid.org/0000-0002-2002-7118</orcidid></search><sort><creationdate>202401</creationdate><title>Using normalized echo state network to detect abnormal ECG patterns</title><author>Wang, Shenglun ; Ding, Chun ; Wang, Zhaoze ; Shen, Lu ; Wang, Junsong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3510-728f87a127e2101d99de2a9f202eb122efca75edeb6762fc78d1854a55f428643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>abnormal ECG patterns</topic><topic>ECG</topic><topic>Electrocardiography</topic><topic>Heart diseases</topic><topic>normalized echo state network</topic><topic>Performance evaluation</topic><topic>reservoir parameters</topic><topic>Rings (mathematics)</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shenglun</creatorcontrib><creatorcontrib>Ding, Chun</creatorcontrib><creatorcontrib>Wang, Zhaoze</creatorcontrib><creatorcontrib>Shen, Lu</creatorcontrib><creatorcontrib>Wang, Junsong</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shenglun</au><au>Ding, Chun</au><au>Wang, Zhaoze</au><au>Shen, Lu</au><au>Wang, Junsong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using normalized echo state network to detect abnormal ECG patterns</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2024-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>Cardiovascular disease (CVD) stands as a prominent contributor to human mortality. Electrocardiogram (ECG) represents a widely adopted noninvasive method employed by clinicians to detect and diagnose CVDs. Nonetheless, conventional ECG‐based detection approaches for cardiac disorders tend to be time‐consuming and inefficient, necessitating the need for more effective solutions. Recent studies have highlighted the effectiveness of the echo state network (ESN) in detecting abnormal ECG patterns. However, traditional ESN models often face challenges such as unstable training and convergence difficulties due to variations in the range of reservoir state values. To address this issue, this study introduces a novel approach called the normalized echo state network (NESN). The NESN method normalizes the states of all neurons within the reservoir before applying the nonlinear activation function. In our study, we conducted performance evaluations of the proposed model using the MIT‐BIH arrhythmia database. We performed a synergistical analysis to investigate the impact of reservoir parameters on the network performance. The experimental results demonstrated promising outcomes, with an accuracy of 99.1% and an F1‐score of 96.4%. Specifically, for detecting abnormal ECG patterns, our model achieved a sensitivity of 90.2%, a positive predictive value of 96.6%, and a specificity of 99.8%. These results highlight the superior performance of our classifier compared to most traditional mainstream heartbeat detection methods and ring topology ESN model.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ima.22940</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7897-5412</orcidid><orcidid>https://orcid.org/0000-0002-2002-7118</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0899-9457
ispartof International journal of imaging systems and technology, 2024-01, Vol.34 (1), p.n/a
issn 0899-9457
1098-1098
language eng
recordid cdi_proquest_journals_2919335337
source Wiley Online Library - AutoHoldings Journals
subjects abnormal ECG patterns
ECG
Electrocardiography
Heart diseases
normalized echo state network
Performance evaluation
reservoir parameters
Rings (mathematics)
Topology
title Using normalized echo state network to detect abnormal ECG patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20normalized%20echo%20state%20network%20to%20detect%20abnormal%20ECG%20patterns&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Wang,%20Shenglun&rft.date=2024-01&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22940&rft_dat=%3Cproquest_cross%3E2919335337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919335337&rft_id=info:pmid/&rfr_iscdi=true