Bismaleimide resin co‐modified by allyl ether of resveratrol and allyl ether of eugenol‐grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy

Modifying bismaleimide (BMI) resin to improve its toughness and flame retardancy without sacrificing the glass transition temperature (Tg) and thermal decomposition stability is still a challenge. In this study, we employed the allyl ether of resveratrol (AER) and eugenol allyl ether grafted polysil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers for advanced technologies 2024-01, Vol.35 (1), p.n/a
Hauptverfasser: Xie, Kaili, Zhang, Zilong, Zhang, Ke, Li, Xiaohan, Bao, Ying, Huang, Jiateng, Li, Xiaojie, Liu, Jingcheng, Wei, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Polymers for advanced technologies
container_volume 35
creator Xie, Kaili
Zhang, Zilong
Zhang, Ke
Li, Xiaohan
Bao, Ying
Huang, Jiateng
Li, Xiaojie
Liu, Jingcheng
Wei, Wei
description Modifying bismaleimide (BMI) resin to improve its toughness and flame retardancy without sacrificing the glass transition temperature (Tg) and thermal decomposition stability is still a challenge. In this study, we employed the allyl ether of resveratrol (AER) and eugenol allyl ether grafted polysiloxane (PMES‐Allyl) to co‐modify BMI resin. For the BMI/AER/PMES‐Allyl (BAPA) resin, the content of PMES‐Allyl was 15 wt%, and the molar ratio of maleimide and allyl groups was controlled as 1:0.8. Compared to commercial 2,2′‐diallyl bisphenol A modified BMI (BD) resin, the BAPA resin exhibited superior thermal properties after curing, due to the role of AER in improving the crosslinking density and chain rigidity of the network. The cured BAPA resin had a Tg more than 380°C, and its initial thermal decomposition temperature (Td5%) and char yield (Y800°C) reached 424.8°C and 46.4%, respectively. Meanwhile, PMES‐Allyl as a rubber phase could effectively improve the toughness of the cured resin. The impact strength of the cured BAPA resin was 15.2 kJ/m2. Moreover, the two modifiers both helped to improve the flame retardancy of the material. Compared with the cured BD resin, the cured BAPA resin showed a decrease of peak heat release rate (PHRR), total heat release (THR), and maximum average rate of heat emission (MARHE) by 25.5%, 35.5%, and 31.5%, respectively. Its total smoke production (TSP) was only 35.6% of that of the cured BD resin. In addition, the cured BAPA resin also displayed a lowered water absorption and improved thermal aging resistance. Therefore, it is suggested to be a promising and high‐performance thermosetting resin for cutting‐edge applications.
doi_str_mv 10.1002/pat.6191
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2919309875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2919309875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-d48420cde0148288cb59c44b6171159ba103f31bb7714ed2c4b5182a2b2a5c983</originalsourceid><addsrcrecordid>eNp1kU1OwzAQhSMEEr8SR7DEhgUBj5OQeFkq_qRKsIB15DiTxsiJi-1SsuMI3IQ7cRKclhUSqxnN-_RmNC-KjoGeA6XsYiH8-SVw2Ir2gHIeQ1bA9tinLM4hzXejfedeKA0az_eiryvlOqFRdapGYtGpnkjz_fHZmVo1CmtSDURoPWiCvkVLTDNSb2iFt0YT0dd_ZVzOsTc6eMytaHywWBg9OKXNu-iRrJRvCfat6GWQvFnO2x6dOyMtCr--wPlRO1t7N1p0411e2DpMh8NopxHa4dFvPYieb66fpnfx7OH2fjqZxZLxBOI6LVJGZY0U0oIVhawyLtO0uoQcIOOVAJo0CVRVHn6CNZNplUHBBKuYyCQvkoPoZOO7sOZ1ic6XL2Zp-7CyZBx4QnmRZ4E63VDSGucsNuXCqk7YoQRajnGUIY5yjCOg8QZdKY3Dv1z5OHla8z8AypEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919309875</pqid></control><display><type>article</type><title>Bismaleimide resin co‐modified by allyl ether of resveratrol and allyl ether of eugenol‐grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xie, Kaili ; Zhang, Zilong ; Zhang, Ke ; Li, Xiaohan ; Bao, Ying ; Huang, Jiateng ; Li, Xiaojie ; Liu, Jingcheng ; Wei, Wei</creator><creatorcontrib>Xie, Kaili ; Zhang, Zilong ; Zhang, Ke ; Li, Xiaohan ; Bao, Ying ; Huang, Jiateng ; Li, Xiaojie ; Liu, Jingcheng ; Wei, Wei</creatorcontrib><description>Modifying bismaleimide (BMI) resin to improve its toughness and flame retardancy without sacrificing the glass transition temperature (Tg) and thermal decomposition stability is still a challenge. In this study, we employed the allyl ether of resveratrol (AER) and eugenol allyl ether grafted polysiloxane (PMES‐Allyl) to co‐modify BMI resin. For the BMI/AER/PMES‐Allyl (BAPA) resin, the content of PMES‐Allyl was 15 wt%, and the molar ratio of maleimide and allyl groups was controlled as 1:0.8. Compared to commercial 2,2′‐diallyl bisphenol A modified BMI (BD) resin, the BAPA resin exhibited superior thermal properties after curing, due to the role of AER in improving the crosslinking density and chain rigidity of the network. The cured BAPA resin had a Tg more than 380°C, and its initial thermal decomposition temperature (Td5%) and char yield (Y800°C) reached 424.8°C and 46.4%, respectively. Meanwhile, PMES‐Allyl as a rubber phase could effectively improve the toughness of the cured resin. The impact strength of the cured BAPA resin was 15.2 kJ/m2. Moreover, the two modifiers both helped to improve the flame retardancy of the material. Compared with the cured BD resin, the cured BAPA resin showed a decrease of peak heat release rate (PHRR), total heat release (THR), and maximum average rate of heat emission (MARHE) by 25.5%, 35.5%, and 31.5%, respectively. Its total smoke production (TSP) was only 35.6% of that of the cured BD resin. In addition, the cured BAPA resin also displayed a lowered water absorption and improved thermal aging resistance. Therefore, it is suggested to be a promising and high‐performance thermosetting resin for cutting‐edge applications.</description><identifier>ISSN: 1042-7147</identifier><identifier>EISSN: 1099-1581</identifier><identifier>DOI: 10.1002/pat.6191</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>bismaleimide resin ; Bismaleimides ; Bisphenol A ; Crosslinking ; Enthalpy ; Fire resistance ; flame retardancy ; Glass transition temperature ; Heat release rate ; Heat resistance ; Impact strength ; polysiloxane ; Polysiloxanes ; resveratrol ; Thermal decomposition ; Thermal resistance ; thermal stability ; Thermodynamic properties ; Thermosetting resins ; Toughness ; Water absorption</subject><ispartof>Polymers for advanced technologies, 2024-01, Vol.35 (1), p.n/a</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-d48420cde0148288cb59c44b6171159ba103f31bb7714ed2c4b5182a2b2a5c983</citedby><cites>FETCH-LOGICAL-c2931-d48420cde0148288cb59c44b6171159ba103f31bb7714ed2c4b5182a2b2a5c983</cites><orcidid>0000-0003-1312-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpat.6191$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpat.6191$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Xie, Kaili</creatorcontrib><creatorcontrib>Zhang, Zilong</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Li, Xiaohan</creatorcontrib><creatorcontrib>Bao, Ying</creatorcontrib><creatorcontrib>Huang, Jiateng</creatorcontrib><creatorcontrib>Li, Xiaojie</creatorcontrib><creatorcontrib>Liu, Jingcheng</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><title>Bismaleimide resin co‐modified by allyl ether of resveratrol and allyl ether of eugenol‐grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy</title><title>Polymers for advanced technologies</title><description>Modifying bismaleimide (BMI) resin to improve its toughness and flame retardancy without sacrificing the glass transition temperature (Tg) and thermal decomposition stability is still a challenge. In this study, we employed the allyl ether of resveratrol (AER) and eugenol allyl ether grafted polysiloxane (PMES‐Allyl) to co‐modify BMI resin. For the BMI/AER/PMES‐Allyl (BAPA) resin, the content of PMES‐Allyl was 15 wt%, and the molar ratio of maleimide and allyl groups was controlled as 1:0.8. Compared to commercial 2,2′‐diallyl bisphenol A modified BMI (BD) resin, the BAPA resin exhibited superior thermal properties after curing, due to the role of AER in improving the crosslinking density and chain rigidity of the network. The cured BAPA resin had a Tg more than 380°C, and its initial thermal decomposition temperature (Td5%) and char yield (Y800°C) reached 424.8°C and 46.4%, respectively. Meanwhile, PMES‐Allyl as a rubber phase could effectively improve the toughness of the cured resin. The impact strength of the cured BAPA resin was 15.2 kJ/m2. Moreover, the two modifiers both helped to improve the flame retardancy of the material. Compared with the cured BD resin, the cured BAPA resin showed a decrease of peak heat release rate (PHRR), total heat release (THR), and maximum average rate of heat emission (MARHE) by 25.5%, 35.5%, and 31.5%, respectively. Its total smoke production (TSP) was only 35.6% of that of the cured BD resin. In addition, the cured BAPA resin also displayed a lowered water absorption and improved thermal aging resistance. Therefore, it is suggested to be a promising and high‐performance thermosetting resin for cutting‐edge applications.</description><subject>bismaleimide resin</subject><subject>Bismaleimides</subject><subject>Bisphenol A</subject><subject>Crosslinking</subject><subject>Enthalpy</subject><subject>Fire resistance</subject><subject>flame retardancy</subject><subject>Glass transition temperature</subject><subject>Heat release rate</subject><subject>Heat resistance</subject><subject>Impact strength</subject><subject>polysiloxane</subject><subject>Polysiloxanes</subject><subject>resveratrol</subject><subject>Thermal decomposition</subject><subject>Thermal resistance</subject><subject>thermal stability</subject><subject>Thermodynamic properties</subject><subject>Thermosetting resins</subject><subject>Toughness</subject><subject>Water absorption</subject><issn>1042-7147</issn><issn>1099-1581</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kU1OwzAQhSMEEr8SR7DEhgUBj5OQeFkq_qRKsIB15DiTxsiJi-1SsuMI3IQ7cRKclhUSqxnN-_RmNC-KjoGeA6XsYiH8-SVw2Ir2gHIeQ1bA9tinLM4hzXejfedeKA0az_eiryvlOqFRdapGYtGpnkjz_fHZmVo1CmtSDURoPWiCvkVLTDNSb2iFt0YT0dd_ZVzOsTc6eMytaHywWBg9OKXNu-iRrJRvCfat6GWQvFnO2x6dOyMtCr--wPlRO1t7N1p0411e2DpMh8NopxHa4dFvPYieb66fpnfx7OH2fjqZxZLxBOI6LVJGZY0U0oIVhawyLtO0uoQcIOOVAJo0CVRVHn6CNZNplUHBBKuYyCQvkoPoZOO7sOZ1ic6XL2Zp-7CyZBx4QnmRZ4E63VDSGucsNuXCqk7YoQRajnGUIY5yjCOg8QZdKY3Dv1z5OHla8z8AypEY</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Xie, Kaili</creator><creator>Zhang, Zilong</creator><creator>Zhang, Ke</creator><creator>Li, Xiaohan</creator><creator>Bao, Ying</creator><creator>Huang, Jiateng</creator><creator>Li, Xiaojie</creator><creator>Liu, Jingcheng</creator><creator>Wei, Wei</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1312-4400</orcidid></search><sort><creationdate>202401</creationdate><title>Bismaleimide resin co‐modified by allyl ether of resveratrol and allyl ether of eugenol‐grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy</title><author>Xie, Kaili ; Zhang, Zilong ; Zhang, Ke ; Li, Xiaohan ; Bao, Ying ; Huang, Jiateng ; Li, Xiaojie ; Liu, Jingcheng ; Wei, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-d48420cde0148288cb59c44b6171159ba103f31bb7714ed2c4b5182a2b2a5c983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bismaleimide resin</topic><topic>Bismaleimides</topic><topic>Bisphenol A</topic><topic>Crosslinking</topic><topic>Enthalpy</topic><topic>Fire resistance</topic><topic>flame retardancy</topic><topic>Glass transition temperature</topic><topic>Heat release rate</topic><topic>Heat resistance</topic><topic>Impact strength</topic><topic>polysiloxane</topic><topic>Polysiloxanes</topic><topic>resveratrol</topic><topic>Thermal decomposition</topic><topic>Thermal resistance</topic><topic>thermal stability</topic><topic>Thermodynamic properties</topic><topic>Thermosetting resins</topic><topic>Toughness</topic><topic>Water absorption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Kaili</creatorcontrib><creatorcontrib>Zhang, Zilong</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Li, Xiaohan</creatorcontrib><creatorcontrib>Bao, Ying</creatorcontrib><creatorcontrib>Huang, Jiateng</creatorcontrib><creatorcontrib>Li, Xiaojie</creatorcontrib><creatorcontrib>Liu, Jingcheng</creatorcontrib><creatorcontrib>Wei, Wei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymers for advanced technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Kaili</au><au>Zhang, Zilong</au><au>Zhang, Ke</au><au>Li, Xiaohan</au><au>Bao, Ying</au><au>Huang, Jiateng</au><au>Li, Xiaojie</au><au>Liu, Jingcheng</au><au>Wei, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bismaleimide resin co‐modified by allyl ether of resveratrol and allyl ether of eugenol‐grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy</atitle><jtitle>Polymers for advanced technologies</jtitle><date>2024-01</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><epage>n/a</epage><issn>1042-7147</issn><eissn>1099-1581</eissn><abstract>Modifying bismaleimide (BMI) resin to improve its toughness and flame retardancy without sacrificing the glass transition temperature (Tg) and thermal decomposition stability is still a challenge. In this study, we employed the allyl ether of resveratrol (AER) and eugenol allyl ether grafted polysiloxane (PMES‐Allyl) to co‐modify BMI resin. For the BMI/AER/PMES‐Allyl (BAPA) resin, the content of PMES‐Allyl was 15 wt%, and the molar ratio of maleimide and allyl groups was controlled as 1:0.8. Compared to commercial 2,2′‐diallyl bisphenol A modified BMI (BD) resin, the BAPA resin exhibited superior thermal properties after curing, due to the role of AER in improving the crosslinking density and chain rigidity of the network. The cured BAPA resin had a Tg more than 380°C, and its initial thermal decomposition temperature (Td5%) and char yield (Y800°C) reached 424.8°C and 46.4%, respectively. Meanwhile, PMES‐Allyl as a rubber phase could effectively improve the toughness of the cured resin. The impact strength of the cured BAPA resin was 15.2 kJ/m2. Moreover, the two modifiers both helped to improve the flame retardancy of the material. Compared with the cured BD resin, the cured BAPA resin showed a decrease of peak heat release rate (PHRR), total heat release (THR), and maximum average rate of heat emission (MARHE) by 25.5%, 35.5%, and 31.5%, respectively. Its total smoke production (TSP) was only 35.6% of that of the cured BD resin. In addition, the cured BAPA resin also displayed a lowered water absorption and improved thermal aging resistance. Therefore, it is suggested to be a promising and high‐performance thermosetting resin for cutting‐edge applications.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/pat.6191</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1312-4400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1042-7147
ispartof Polymers for advanced technologies, 2024-01, Vol.35 (1), p.n/a
issn 1042-7147
1099-1581
language eng
recordid cdi_proquest_journals_2919309875
source Wiley Online Library Journals Frontfile Complete
subjects bismaleimide resin
Bismaleimides
Bisphenol A
Crosslinking
Enthalpy
Fire resistance
flame retardancy
Glass transition temperature
Heat release rate
Heat resistance
Impact strength
polysiloxane
Polysiloxanes
resveratrol
Thermal decomposition
Thermal resistance
thermal stability
Thermodynamic properties
Thermosetting resins
Toughness
Water absorption
title Bismaleimide resin co‐modified by allyl ether of resveratrol and allyl ether of eugenol‐grafted polysiloxane with enhanced toughness, heat resistance, and flame retardancy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A41%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bismaleimide%20resin%20co%E2%80%90modified%20by%20allyl%20ether%20of%20resveratrol%20and%20allyl%20ether%20of%20eugenol%E2%80%90grafted%20polysiloxane%20with%20enhanced%20toughness,%20heat%20resistance,%20and%20flame%20retardancy&rft.jtitle=Polymers%20for%20advanced%20technologies&rft.au=Xie,%20Kaili&rft.date=2024-01&rft.volume=35&rft.issue=1&rft.epage=n/a&rft.issn=1042-7147&rft.eissn=1099-1581&rft_id=info:doi/10.1002/pat.6191&rft_dat=%3Cproquest_cross%3E2919309875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919309875&rft_id=info:pmid/&rfr_iscdi=true