Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment

We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth D ( x ) with two shallow banks (which means that the function D ( x ) vanishes at the points defining the banks) or with one shallow bank and a vertical wall....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2023-12, Vol.58 (7), p.1213-1226
Hauptverfasser: Dobrokhotov, S. Yu, Kalinichenko, V. A., Minenkov, D. S., Nazaikinskii, V. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1226
container_issue 7
container_start_page 1213
container_title Fluid dynamics
container_volume 58
creator Dobrokhotov, S. Yu
Kalinichenko, V. A.
Minenkov, D. S.
Nazaikinskii, V. E.
description We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth D ( x ) with two shallow banks (which means that the function D ( x ) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.
doi_str_mv 10.1134/S0015462823602097
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2919136337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780691960</galeid><sourcerecordid>A780691960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKs_wLeAz1tzafbiW631AgWFVnxcstlJm7pNarK19t-bpYIPInmYMOd8w5lB6JKSAaV8eD0jhIphynLGU8JIkR2hHhUZT3JBsmPU6-Sk00_RWQgrQqIlZT0Eo7Bfb1rXGhWw03jq7ALPWmlrEz9v8hMCNhY_W0juzBpsMM7KBr841wS8M-0Sz5ayadwO30r7Hm7wfAnO73EcgCdfG_Ad1J6jEy2bABc_tY9e7yfz8WMyfX54Go-mieJCtIkY1iyVhYZcEqFYUQumuajySmjKICWa5QqUisEJJ7Kqowhc0byqMlAyy3gfXR3mbrz72EJoy5Xb-hg4lKygBeUp551rcHAtZAOlsdq1Xqr4algb5SxoE_ujLCdphFISAXoAlHcheNDlJu4l_b6kpOzOX_45f2TYgQnRaxfgf6P8D30D4zKG0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919136337</pqid></control><display><type>article</type><title>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dobrokhotov, S. Yu ; Kalinichenko, V. A. ; Minenkov, D. S. ; Nazaikinskii, V. E.</creator><creatorcontrib>Dobrokhotov, S. Yu ; Kalinichenko, V. A. ; Minenkov, D. S. ; Nazaikinskii, V. E.</creatorcontrib><description>We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth D ( x ) with two shallow banks (which means that the function D ( x ) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462823602097</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Banks (Finance) ; Classical and Continuum Physics ; Classical Mechanics ; Eigenvectors ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Mathematical analysis ; Nonlinear equations ; Physics ; Physics and Astronomy ; Seiches ; Shallow water equations ; Standing waves ; Water waves</subject><ispartof>Fluid dynamics, 2023-12, Vol.58 (7), p.1213-1226</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0015-4628, Fluid Dynamics, 2023, Vol. 58, No. 7, pp. 1213–1226. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Prikladnaya Matematika i Mekhanika, 2023, Vol. 87, No. 2, pp. 157–175.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</citedby><cites>FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462823602097$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462823602097$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Kalinichenko, V. A.</creatorcontrib><creatorcontrib>Minenkov, D. S.</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><title>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth D ( x ) with two shallow banks (which means that the function D ( x ) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.</description><subject>Asymptotic methods</subject><subject>Banks (Finance)</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Eigenvectors</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Seiches</subject><subject>Shallow water equations</subject><subject>Standing waves</subject><subject>Water waves</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKs_wLeAz1tzafbiW631AgWFVnxcstlJm7pNarK19t-bpYIPInmYMOd8w5lB6JKSAaV8eD0jhIphynLGU8JIkR2hHhUZT3JBsmPU6-Sk00_RWQgrQqIlZT0Eo7Bfb1rXGhWw03jq7ALPWmlrEz9v8hMCNhY_W0juzBpsMM7KBr841wS8M-0Sz5ayadwO30r7Hm7wfAnO73EcgCdfG_Ad1J6jEy2bABc_tY9e7yfz8WMyfX54Go-mieJCtIkY1iyVhYZcEqFYUQumuajySmjKICWa5QqUisEJJ7Kqowhc0byqMlAyy3gfXR3mbrz72EJoy5Xb-hg4lKygBeUp551rcHAtZAOlsdq1Xqr4algb5SxoE_ujLCdphFISAXoAlHcheNDlJu4l_b6kpOzOX_45f2TYgQnRaxfgf6P8D30D4zKG0A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Dobrokhotov, S. Yu</creator><creator>Kalinichenko, V. A.</creator><creator>Minenkov, D. S.</creator><creator>Nazaikinskii, V. E.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</title><author>Dobrokhotov, S. Yu ; Kalinichenko, V. A. ; Minenkov, D. S. ; Nazaikinskii, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Banks (Finance)</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Eigenvectors</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Seiches</topic><topic>Shallow water equations</topic><topic>Standing waves</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Kalinichenko, V. A.</creatorcontrib><creatorcontrib>Minenkov, D. S.</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrokhotov, S. Yu</au><au>Kalinichenko, V. A.</au><au>Minenkov, D. S.</au><au>Nazaikinskii, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>58</volume><issue>7</issue><spage>1213</spage><epage>1226</epage><pages>1213-1226</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth D ( x ) with two shallow banks (which means that the function D ( x ) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462823602097</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2023-12, Vol.58 (7), p.1213-1226
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_journals_2919136337
source SpringerLink Journals - AutoHoldings
subjects Asymptotic methods
Banks (Finance)
Classical and Continuum Physics
Classical Mechanics
Eigenvectors
Engineering Fluid Dynamics
Fluid- and Aerodynamics
Mathematical analysis
Nonlinear equations
Physics
Physics and Astronomy
Seiches
Shallow water equations
Standing waves
Water waves
title Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20Long%20Standing%20Waves%20in%20One-Dimensional%20Pools%20with%20Shallow%20Banks:%20Theory%20and%20Experiment&rft.jtitle=Fluid%20dynamics&rft.au=Dobrokhotov,%20S.%20Yu&rft.date=2023-12-01&rft.volume=58&rft.issue=7&rft.spage=1213&rft.epage=1226&rft.pages=1213-1226&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462823602097&rft_dat=%3Cgale_proqu%3EA780691960%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919136337&rft_id=info:pmid/&rft_galeid=A780691960&rfr_iscdi=true