Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment
We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth D ( x ) with two shallow banks (which means that the function D ( x ) vanishes at the points defining the banks) or with one shallow bank and a vertical wall....
Gespeichert in:
Veröffentlicht in: | Fluid dynamics 2023-12, Vol.58 (7), p.1213-1226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1226 |
---|---|
container_issue | 7 |
container_start_page | 1213 |
container_title | Fluid dynamics |
container_volume | 58 |
creator | Dobrokhotov, S. Yu Kalinichenko, V. A. Minenkov, D. S. Nazaikinskii, V. E. |
description | We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth
D
(
x
) with two shallow banks (which means that the function
D
(
x
) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator
are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment. |
doi_str_mv | 10.1134/S0015462823602097 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2919136337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780691960</galeid><sourcerecordid>A780691960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</originalsourceid><addsrcrecordid>eNp1kFtLAzEQhYMoWKs_wLeAz1tzafbiW631AgWFVnxcstlJm7pNarK19t-bpYIPInmYMOd8w5lB6JKSAaV8eD0jhIphynLGU8JIkR2hHhUZT3JBsmPU6-Sk00_RWQgrQqIlZT0Eo7Bfb1rXGhWw03jq7ALPWmlrEz9v8hMCNhY_W0juzBpsMM7KBr841wS8M-0Sz5ayadwO30r7Hm7wfAnO73EcgCdfG_Ad1J6jEy2bABc_tY9e7yfz8WMyfX54Go-mieJCtIkY1iyVhYZcEqFYUQumuajySmjKICWa5QqUisEJJ7Kqowhc0byqMlAyy3gfXR3mbrz72EJoy5Xb-hg4lKygBeUp551rcHAtZAOlsdq1Xqr4algb5SxoE_ujLCdphFISAXoAlHcheNDlJu4l_b6kpOzOX_45f2TYgQnRaxfgf6P8D30D4zKG0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2919136337</pqid></control><display><type>article</type><title>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</title><source>SpringerLink Journals - AutoHoldings</source><creator>Dobrokhotov, S. Yu ; Kalinichenko, V. A. ; Minenkov, D. S. ; Nazaikinskii, V. E.</creator><creatorcontrib>Dobrokhotov, S. Yu ; Kalinichenko, V. A. ; Minenkov, D. S. ; Nazaikinskii, V. E.</creatorcontrib><description>We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth
D
(
x
) with two shallow banks (which means that the function
D
(
x
) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator
are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462823602097</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic methods ; Banks (Finance) ; Classical and Continuum Physics ; Classical Mechanics ; Eigenvectors ; Engineering Fluid Dynamics ; Fluid- and Aerodynamics ; Mathematical analysis ; Nonlinear equations ; Physics ; Physics and Astronomy ; Seiches ; Shallow water equations ; Standing waves ; Water waves</subject><ispartof>Fluid dynamics, 2023-12, Vol.58 (7), p.1213-1226</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 0015-4628, Fluid Dynamics, 2023, Vol. 58, No. 7, pp. 1213–1226. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Prikladnaya Matematika i Mekhanika, 2023, Vol. 87, No. 2, pp. 157–175.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</citedby><cites>FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462823602097$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462823602097$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Kalinichenko, V. A.</creatorcontrib><creatorcontrib>Minenkov, D. S.</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><title>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth
D
(
x
) with two shallow banks (which means that the function
D
(
x
) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator
are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.</description><subject>Asymptotic methods</subject><subject>Banks (Finance)</subject><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Eigenvectors</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Nonlinear equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Seiches</subject><subject>Shallow water equations</subject><subject>Standing waves</subject><subject>Water waves</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kFtLAzEQhYMoWKs_wLeAz1tzafbiW631AgWFVnxcstlJm7pNarK19t-bpYIPInmYMOd8w5lB6JKSAaV8eD0jhIphynLGU8JIkR2hHhUZT3JBsmPU6-Sk00_RWQgrQqIlZT0Eo7Bfb1rXGhWw03jq7ALPWmlrEz9v8hMCNhY_W0juzBpsMM7KBr841wS8M-0Sz5ayadwO30r7Hm7wfAnO73EcgCdfG_Ad1J6jEy2bABc_tY9e7yfz8WMyfX54Go-mieJCtIkY1iyVhYZcEqFYUQumuajySmjKICWa5QqUisEJJ7Kqowhc0byqMlAyy3gfXR3mbrz72EJoy5Xb-hg4lKygBeUp551rcHAtZAOlsdq1Xqr4algb5SxoE_ujLCdphFISAXoAlHcheNDlJu4l_b6kpOzOX_45f2TYgQnRaxfgf6P8D30D4zKG0A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Dobrokhotov, S. Yu</creator><creator>Kalinichenko, V. A.</creator><creator>Minenkov, D. S.</creator><creator>Nazaikinskii, V. E.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</title><author>Dobrokhotov, S. Yu ; Kalinichenko, V. A. ; Minenkov, D. S. ; Nazaikinskii, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-54d26a9fe8a05c29d52f35b8b5f12e60f28cecc762030abdf35e3c18bb7eca773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic methods</topic><topic>Banks (Finance)</topic><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Eigenvectors</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Nonlinear equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Seiches</topic><topic>Shallow water equations</topic><topic>Standing waves</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dobrokhotov, S. Yu</creatorcontrib><creatorcontrib>Kalinichenko, V. A.</creatorcontrib><creatorcontrib>Minenkov, D. S.</creatorcontrib><creatorcontrib>Nazaikinskii, V. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dobrokhotov, S. Yu</au><au>Kalinichenko, V. A.</au><au>Minenkov, D. S.</au><au>Nazaikinskii, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>58</volume><issue>7</issue><spage>1213</spage><epage>1226</epage><pages>1213-1226</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>We construct time-periodic asymptotic solutions for a one-dimensional system of nonlinear shallow water equations in a pool of variable depth
D
(
x
) with two shallow banks (which means that the function
D
(
x
) vanishes at the points defining the banks) or with one shallow bank and a vertical wall. Such solutions describe standing waves similar to well-known Faraday waves in pools with vertical walls. In particular, they approximately describe seiches in elongated bodies of water. The construction of such solutions consists of two stages. First, time-harmonic exact and asymptotic solutions of the linearized system generated by the eigenfunctions of the operator
are determined, and then, using a recently developed approach based on simplification and modification of the Carrier–Greenspan transformation, solutions of nonlinear equations are reconstructed in parametric form. The resulting asymptotic solutions are compared with experimental results based on the parametric resonance excitation of waves in a bench experiment.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0015462823602097</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-4628 |
ispartof | Fluid dynamics, 2023-12, Vol.58 (7), p.1213-1226 |
issn | 0015-4628 1573-8507 |
language | eng |
recordid | cdi_proquest_journals_2919136337 |
source | SpringerLink Journals - AutoHoldings |
subjects | Asymptotic methods Banks (Finance) Classical and Continuum Physics Classical Mechanics Eigenvectors Engineering Fluid Dynamics Fluid- and Aerodynamics Mathematical analysis Nonlinear equations Physics Physics and Astronomy Seiches Shallow water equations Standing waves Water waves |
title | Asymptotics of Long Standing Waves in One-Dimensional Pools with Shallow Banks: Theory and Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotics%20of%20Long%20Standing%20Waves%20in%20One-Dimensional%20Pools%20with%20Shallow%20Banks:%20Theory%20and%20Experiment&rft.jtitle=Fluid%20dynamics&rft.au=Dobrokhotov,%20S.%20Yu&rft.date=2023-12-01&rft.volume=58&rft.issue=7&rft.spage=1213&rft.epage=1226&rft.pages=1213-1226&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462823602097&rft_dat=%3Cgale_proqu%3EA780691960%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2919136337&rft_id=info:pmid/&rft_galeid=A780691960&rfr_iscdi=true |