The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application
The fossil fuel crisis is a major concern across the globe, and fossil fuels are being exhausted day by day. It is essential to promptly change from fossil fuels to renewable energy resources for transportation applications as they make a major contribution to fossil fuel consumption. Among the avai...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-01, Vol.16 (2), p.872 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 872 |
container_title | Sustainability |
container_volume | 16 |
creator | Karthikeyan, B Ramasamy, Palanisamy Pandi Maharajan, M Padmamalini, N Sivakumar, J Choudhury, Subhashree Savari, George Fernandez |
description | The fossil fuel crisis is a major concern across the globe, and fossil fuels are being exhausted day by day. It is essential to promptly change from fossil fuels to renewable energy resources for transportation applications as they make a major contribution to fossil fuel consumption. Among the available energy resources, a fuel cell is the most affordable for transportation applications because of such advantages as moderate operating temperature, high energy density, and scalable size. It is a challenging task to optimize PEMFC operating parameters for the enhancement of performance. This paper provides a detailed study on the optimization of PEMFC operating parameters using a multilayer feed-forward neural network, a genetic algorithm, and the design of a multiport high-gain DC–DC converter for hybrid electric vehicle application, which is capable of handling both a 6 kW PEMFC and an 80 AH 12 V heavy-duty battery. To trace the maximum power from the PEMFC, the most recent SFO-based MPPT control technique is implemented in this research work. Initially, a multilayer feed-forward neural network is trained using a back-propagation algorithm with experimental data. Then, the optimization phase is separately carried out in a neural-power software environment using a genetic algorithm (GA). The simulation study was carried out using the MATLAB/R2022a platform to verify the converter performance along with the SFO-based MPPT controller. To validate the real-time test bench results, a 0.2 kW prototype model was constructed in the laboratory, and the results were verified. |
doi_str_mv | 10.3390/su16020872 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918799184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780927785</galeid><sourcerecordid>A780927785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-15ec1d1e40264c03ee357f19174a03215f6270ab7e3853d884f07ba1cdcd8f783</originalsourceid><addsrcrecordid>eNpVkcFO3DAQhq2KSqAtlz6BJU6tFLDjJHaOq-zCIoFALeUaeZ1x1sgbB9tpS0-8Q0-8Hk9Sl61EGUsz1sz3ezwahD5ScsxYTU7CRCuSE8Hzd-ggJ5xmlJRk77_7PjoM4Y4kY4zWtDpATzcbwFdjNFvzS0bjBuw0vl5e4tMJbNaAtakKPpWGHl9LL7cQwQf8w8QNjkm7gGD6F5XEl5ONZnQ-4pXpN9mZNANeNM-PvxcNbtzwHXzSYu08Xj2svenw0oKK3ih8CxujLOD5OFqjXj7yAb3X0gY4_Bdn6Nvp8qZZZRdXZ-fN_CJTrBIxoyUo2lEoSF4VijAAVnKdhuOFJCynpa5yTuSaAxMl64QoNOFrSVWnOqG5YDN0tHt39O5-ghDbOzf5IbVs85oKXidXJOp4R_XSQmsG7aKXKp0Otka5AbRJ-TkXpM45T51m6NMbQWIi_Iy9nEJoz79-ect-3rHKuxA86Hb0Ziv9Q0tJ-3e17etq2R8RM5Wd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918799184</pqid></control><display><type>article</type><title>The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Karthikeyan, B ; Ramasamy, Palanisamy ; Pandi Maharajan, M ; Padmamalini, N ; Sivakumar, J ; Choudhury, Subhashree ; Savari, George Fernandez</creator><creatorcontrib>Karthikeyan, B ; Ramasamy, Palanisamy ; Pandi Maharajan, M ; Padmamalini, N ; Sivakumar, J ; Choudhury, Subhashree ; Savari, George Fernandez</creatorcontrib><description>The fossil fuel crisis is a major concern across the globe, and fossil fuels are being exhausted day by day. It is essential to promptly change from fossil fuels to renewable energy resources for transportation applications as they make a major contribution to fossil fuel consumption. Among the available energy resources, a fuel cell is the most affordable for transportation applications because of such advantages as moderate operating temperature, high energy density, and scalable size. It is a challenging task to optimize PEMFC operating parameters for the enhancement of performance. This paper provides a detailed study on the optimization of PEMFC operating parameters using a multilayer feed-forward neural network, a genetic algorithm, and the design of a multiport high-gain DC–DC converter for hybrid electric vehicle application, which is capable of handling both a 6 kW PEMFC and an 80 AH 12 V heavy-duty battery. To trace the maximum power from the PEMFC, the most recent SFO-based MPPT control technique is implemented in this research work. Initially, a multilayer feed-forward neural network is trained using a back-propagation algorithm with experimental data. Then, the optimization phase is separately carried out in a neural-power software environment using a genetic algorithm (GA). The simulation study was carried out using the MATLAB/R2022a platform to verify the converter performance along with the SFO-based MPPT controller. To validate the real-time test bench results, a 0.2 kW prototype model was constructed in the laboratory, and the results were verified.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16020872</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Aluminum ; Design specifications ; Efficiency ; Electric current converters ; Electric vehicles ; Electrodes ; Energy consumption ; Energy minerals ; Energy resources ; Fluid dynamics ; Force and energy ; Fossil fuels ; Fuel cell industry ; Fuel cells ; Genetic algorithms ; Heat conductivity ; Hybrid vehicles ; Hydrogen as fuel ; Investigations ; Neural networks ; Optimization techniques ; Protons ; Researchers ; Simulation ; Software ; Sustainable development</subject><ispartof>Sustainability, 2024-01, Vol.16 (2), p.872</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-15ec1d1e40264c03ee357f19174a03215f6270ab7e3853d884f07ba1cdcd8f783</citedby><cites>FETCH-LOGICAL-c368t-15ec1d1e40264c03ee357f19174a03215f6270ab7e3853d884f07ba1cdcd8f783</cites><orcidid>0000-0002-5252-4709 ; 0000-0003-0120-9087 ; 0000-0003-0961-7704 ; 0000-0002-1190-0923 ; 0000-0003-1872-7147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Karthikeyan, B</creatorcontrib><creatorcontrib>Ramasamy, Palanisamy</creatorcontrib><creatorcontrib>Pandi Maharajan, M</creatorcontrib><creatorcontrib>Padmamalini, N</creatorcontrib><creatorcontrib>Sivakumar, J</creatorcontrib><creatorcontrib>Choudhury, Subhashree</creatorcontrib><creatorcontrib>Savari, George Fernandez</creatorcontrib><title>The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application</title><title>Sustainability</title><description>The fossil fuel crisis is a major concern across the globe, and fossil fuels are being exhausted day by day. It is essential to promptly change from fossil fuels to renewable energy resources for transportation applications as they make a major contribution to fossil fuel consumption. Among the available energy resources, a fuel cell is the most affordable for transportation applications because of such advantages as moderate operating temperature, high energy density, and scalable size. It is a challenging task to optimize PEMFC operating parameters for the enhancement of performance. This paper provides a detailed study on the optimization of PEMFC operating parameters using a multilayer feed-forward neural network, a genetic algorithm, and the design of a multiport high-gain DC–DC converter for hybrid electric vehicle application, which is capable of handling both a 6 kW PEMFC and an 80 AH 12 V heavy-duty battery. To trace the maximum power from the PEMFC, the most recent SFO-based MPPT control technique is implemented in this research work. Initially, a multilayer feed-forward neural network is trained using a back-propagation algorithm with experimental data. Then, the optimization phase is separately carried out in a neural-power software environment using a genetic algorithm (GA). The simulation study was carried out using the MATLAB/R2022a platform to verify the converter performance along with the SFO-based MPPT controller. To validate the real-time test bench results, a 0.2 kW prototype model was constructed in the laboratory, and the results were verified.</description><subject>Algorithms</subject><subject>Aluminum</subject><subject>Design specifications</subject><subject>Efficiency</subject><subject>Electric current converters</subject><subject>Electric vehicles</subject><subject>Electrodes</subject><subject>Energy consumption</subject><subject>Energy minerals</subject><subject>Energy resources</subject><subject>Fluid dynamics</subject><subject>Force and energy</subject><subject>Fossil fuels</subject><subject>Fuel cell industry</subject><subject>Fuel cells</subject><subject>Genetic algorithms</subject><subject>Heat conductivity</subject><subject>Hybrid vehicles</subject><subject>Hydrogen as fuel</subject><subject>Investigations</subject><subject>Neural networks</subject><subject>Optimization techniques</subject><subject>Protons</subject><subject>Researchers</subject><subject>Simulation</subject><subject>Software</subject><subject>Sustainable development</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkcFO3DAQhq2KSqAtlz6BJU6tFLDjJHaOq-zCIoFALeUaeZ1x1sgbB9tpS0-8Q0-8Hk9Sl61EGUsz1sz3ezwahD5ScsxYTU7CRCuSE8Hzd-ggJ5xmlJRk77_7PjoM4Y4kY4zWtDpATzcbwFdjNFvzS0bjBuw0vl5e4tMJbNaAtakKPpWGHl9LL7cQwQf8w8QNjkm7gGD6F5XEl5ONZnQ-4pXpN9mZNANeNM-PvxcNbtzwHXzSYu08Xj2svenw0oKK3ih8CxujLOD5OFqjXj7yAb3X0gY4_Bdn6Nvp8qZZZRdXZ-fN_CJTrBIxoyUo2lEoSF4VijAAVnKdhuOFJCynpa5yTuSaAxMl64QoNOFrSVWnOqG5YDN0tHt39O5-ghDbOzf5IbVs85oKXidXJOp4R_XSQmsG7aKXKp0Otka5AbRJ-TkXpM45T51m6NMbQWIi_Iy9nEJoz79-ect-3rHKuxA86Hb0Ziv9Q0tJ-3e17etq2R8RM5Wd</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Karthikeyan, B</creator><creator>Ramasamy, Palanisamy</creator><creator>Pandi Maharajan, M</creator><creator>Padmamalini, N</creator><creator>Sivakumar, J</creator><creator>Choudhury, Subhashree</creator><creator>Savari, George Fernandez</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-5252-4709</orcidid><orcidid>https://orcid.org/0000-0003-0120-9087</orcidid><orcidid>https://orcid.org/0000-0003-0961-7704</orcidid><orcidid>https://orcid.org/0000-0002-1190-0923</orcidid><orcidid>https://orcid.org/0000-0003-1872-7147</orcidid></search><sort><creationdate>20240101</creationdate><title>The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application</title><author>Karthikeyan, B ; Ramasamy, Palanisamy ; Pandi Maharajan, M ; Padmamalini, N ; Sivakumar, J ; Choudhury, Subhashree ; Savari, George Fernandez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-15ec1d1e40264c03ee357f19174a03215f6270ab7e3853d884f07ba1cdcd8f783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Aluminum</topic><topic>Design specifications</topic><topic>Efficiency</topic><topic>Electric current converters</topic><topic>Electric vehicles</topic><topic>Electrodes</topic><topic>Energy consumption</topic><topic>Energy minerals</topic><topic>Energy resources</topic><topic>Fluid dynamics</topic><topic>Force and energy</topic><topic>Fossil fuels</topic><topic>Fuel cell industry</topic><topic>Fuel cells</topic><topic>Genetic algorithms</topic><topic>Heat conductivity</topic><topic>Hybrid vehicles</topic><topic>Hydrogen as fuel</topic><topic>Investigations</topic><topic>Neural networks</topic><topic>Optimization techniques</topic><topic>Protons</topic><topic>Researchers</topic><topic>Simulation</topic><topic>Software</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karthikeyan, B</creatorcontrib><creatorcontrib>Ramasamy, Palanisamy</creatorcontrib><creatorcontrib>Pandi Maharajan, M</creatorcontrib><creatorcontrib>Padmamalini, N</creatorcontrib><creatorcontrib>Sivakumar, J</creatorcontrib><creatorcontrib>Choudhury, Subhashree</creatorcontrib><creatorcontrib>Savari, George Fernandez</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karthikeyan, B</au><au>Ramasamy, Palanisamy</au><au>Pandi Maharajan, M</au><au>Padmamalini, N</au><au>Sivakumar, J</au><au>Choudhury, Subhashree</au><au>Savari, George Fernandez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application</atitle><jtitle>Sustainability</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>872</spage><pages>872-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The fossil fuel crisis is a major concern across the globe, and fossil fuels are being exhausted day by day. It is essential to promptly change from fossil fuels to renewable energy resources for transportation applications as they make a major contribution to fossil fuel consumption. Among the available energy resources, a fuel cell is the most affordable for transportation applications because of such advantages as moderate operating temperature, high energy density, and scalable size. It is a challenging task to optimize PEMFC operating parameters for the enhancement of performance. This paper provides a detailed study on the optimization of PEMFC operating parameters using a multilayer feed-forward neural network, a genetic algorithm, and the design of a multiport high-gain DC–DC converter for hybrid electric vehicle application, which is capable of handling both a 6 kW PEMFC and an 80 AH 12 V heavy-duty battery. To trace the maximum power from the PEMFC, the most recent SFO-based MPPT control technique is implemented in this research work. Initially, a multilayer feed-forward neural network is trained using a back-propagation algorithm with experimental data. Then, the optimization phase is separately carried out in a neural-power software environment using a genetic algorithm (GA). The simulation study was carried out using the MATLAB/R2022a platform to verify the converter performance along with the SFO-based MPPT controller. To validate the real-time test bench results, a 0.2 kW prototype model was constructed in the laboratory, and the results were verified.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16020872</doi><orcidid>https://orcid.org/0000-0002-5252-4709</orcidid><orcidid>https://orcid.org/0000-0003-0120-9087</orcidid><orcidid>https://orcid.org/0000-0003-0961-7704</orcidid><orcidid>https://orcid.org/0000-0002-1190-0923</orcidid><orcidid>https://orcid.org/0000-0003-1872-7147</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-01, Vol.16 (2), p.872 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2918799184 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Aluminum Design specifications Efficiency Electric current converters Electric vehicles Electrodes Energy consumption Energy minerals Energy resources Fluid dynamics Force and energy Fossil fuels Fuel cell industry Fuel cells Genetic algorithms Heat conductivity Hybrid vehicles Hydrogen as fuel Investigations Neural networks Optimization techniques Protons Researchers Simulation Software Sustainable development |
title | The Optimization of PEM Fuel-Cell Operating Parameters with the Design of a Multiport High-Gain DC–DC Converter for Hybrid Electric Vehicle Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Optimization%20of%20PEM%20Fuel-Cell%20Operating%20Parameters%20with%20the%20Design%20of%20a%20Multiport%20High-Gain%20DC%E2%80%93DC%20Converter%20for%20Hybrid%20Electric%20Vehicle%20Application&rft.jtitle=Sustainability&rft.au=Karthikeyan,%20B&rft.date=2024-01-01&rft.volume=16&rft.issue=2&rft.spage=872&rft.pages=872-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16020872&rft_dat=%3Cgale_proqu%3EA780927785%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918799184&rft_id=info:pmid/&rft_galeid=A780927785&rfr_iscdi=true |