Machine Learning Insights on Driving Behaviour Dynamics among Germany, Belgium, and UK Drivers

The i-DREAMS project has a core objective: to establish a comprehensive framework that defines, develops, and validates a context-aware ‘Safety Tolerance Zone’ (STZ). This zone is crucial for maintaining drivers within safe operational boundaries. The primary focus of this research is to conduct a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2024-01, Vol.16 (2), p.518
Hauptverfasser: Roussou, Stella, Garefalakis, Thodoris, Michelaraki, Eva, Brijs, Tom, Yannis, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 518
container_title Sustainability
container_volume 16
creator Roussou, Stella
Garefalakis, Thodoris
Michelaraki, Eva
Brijs, Tom
Yannis, George
description The i-DREAMS project has a core objective: to establish a comprehensive framework that defines, develops, and validates a context-aware ‘Safety Tolerance Zone’ (STZ). This zone is crucial for maintaining drivers within safe operational boundaries. The primary focus of this research is to conduct a detailed comparison between two machine learning approaches: long short-term memory networks and shallow neural networks. The goal is to evaluate the safety levels of participants as they engage in natural driving experiences within the i-DREAMS on-road field trials. To accomplish this objective, the study gathered a series of trips from a sample group consisting of 30 German drivers, 43 Belgian drivers, and 26 drivers from the United Kingdom. These trips were then input into the aforementioned machine learning methods to reveal the factors contributing to unsafe driving behaviour across various experiment stages. The results obtained highlight the significant positive impact of i-DREAMS’ real-time interventions and post-trip assessments on enhancing driving behaviour. Furthermore, it is worth noting that neural networks demonstrated superior performance compared to other algorithms considered within this research context.
doi_str_mv 10.3390/su16020518
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918799112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780927427</galeid><sourcerecordid>A780927427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e4559e18c87a1c98d08adfafe30b5dabf47a9d2452bd51b72e0e2514878867133</originalsourceid><addsrcrecordid>eNpVkd9PwjAQxxejiQR58S9Y4pMGsD822j4iKBIxJiqvLsd2GyWsw3Yj8t9bxES5Ptzl7vO96-WC4JKSPueK3LqGDggjMZUnQYsRQXuUxOT0X3wedJxbEW-cU0UHreDjGdKlNhjOEKzRpginxuliWbuwMuHY6u0-d4dL2OqqseF4Z6DUqQuhrHxhgrYEs-t6Yl3opuyGYLJw_vSjROsugrMc1g47v74dzB_u30ePvdnLZDoaznopH8i6h1EcK6QylQJoqmRGJGQ55MjJIs5gkUcCVMaimC2ymC4EQ4IsppEUUg4E5bwdXB36bmz12aCrk5X_rfEjE6aoFEpRyjzVP1AFrDHRJq9qC6l_GfqdKoO59vmhkEQxETHhBddHAs_U-FUX0DiXTN9ej9mbA5vayjmLebKxugS7SyhJ9vdJ_u7DvwGWsIAH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918799112</pqid></control><display><type>article</type><title>Machine Learning Insights on Driving Behaviour Dynamics among Germany, Belgium, and UK Drivers</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Roussou, Stella ; Garefalakis, Thodoris ; Michelaraki, Eva ; Brijs, Tom ; Yannis, George</creator><creatorcontrib>Roussou, Stella ; Garefalakis, Thodoris ; Michelaraki, Eva ; Brijs, Tom ; Yannis, George</creatorcontrib><description>The i-DREAMS project has a core objective: to establish a comprehensive framework that defines, develops, and validates a context-aware ‘Safety Tolerance Zone’ (STZ). This zone is crucial for maintaining drivers within safe operational boundaries. The primary focus of this research is to conduct a detailed comparison between two machine learning approaches: long short-term memory networks and shallow neural networks. The goal is to evaluate the safety levels of participants as they engage in natural driving experiences within the i-DREAMS on-road field trials. To accomplish this objective, the study gathered a series of trips from a sample group consisting of 30 German drivers, 43 Belgian drivers, and 26 drivers from the United Kingdom. These trips were then input into the aforementioned machine learning methods to reveal the factors contributing to unsafe driving behaviour across various experiment stages. The results obtained highlight the significant positive impact of i-DREAMS’ real-time interventions and post-trip assessments on enhancing driving behaviour. Furthermore, it is worth noting that neural networks demonstrated superior performance compared to other algorithms considered within this research context.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16020518</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Automobile drivers ; Autonomous vehicles ; Behavior ; Data collection ; Deep learning ; Human error ; Literature reviews ; Machine learning ; Memory ; Neural networks ; Sensors ; Tolls ; Traffic accidents &amp; safety</subject><ispartof>Sustainability, 2024-01, Vol.16 (2), p.518</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e4559e18c87a1c98d08adfafe30b5dabf47a9d2452bd51b72e0e2514878867133</citedby><cites>FETCH-LOGICAL-c368t-e4559e18c87a1c98d08adfafe30b5dabf47a9d2452bd51b72e0e2514878867133</cites><orcidid>0000-0002-7167-4630 ; 0000-0003-2622-4398 ; 0009-0002-3180-8291 ; 0000-0003-0151-7864 ; 0000-0002-2196-2335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Roussou, Stella</creatorcontrib><creatorcontrib>Garefalakis, Thodoris</creatorcontrib><creatorcontrib>Michelaraki, Eva</creatorcontrib><creatorcontrib>Brijs, Tom</creatorcontrib><creatorcontrib>Yannis, George</creatorcontrib><title>Machine Learning Insights on Driving Behaviour Dynamics among Germany, Belgium, and UK Drivers</title><title>Sustainability</title><description>The i-DREAMS project has a core objective: to establish a comprehensive framework that defines, develops, and validates a context-aware ‘Safety Tolerance Zone’ (STZ). This zone is crucial for maintaining drivers within safe operational boundaries. The primary focus of this research is to conduct a detailed comparison between two machine learning approaches: long short-term memory networks and shallow neural networks. The goal is to evaluate the safety levels of participants as they engage in natural driving experiences within the i-DREAMS on-road field trials. To accomplish this objective, the study gathered a series of trips from a sample group consisting of 30 German drivers, 43 Belgian drivers, and 26 drivers from the United Kingdom. These trips were then input into the aforementioned machine learning methods to reveal the factors contributing to unsafe driving behaviour across various experiment stages. The results obtained highlight the significant positive impact of i-DREAMS’ real-time interventions and post-trip assessments on enhancing driving behaviour. Furthermore, it is worth noting that neural networks demonstrated superior performance compared to other algorithms considered within this research context.</description><subject>Algorithms</subject><subject>Automobile drivers</subject><subject>Autonomous vehicles</subject><subject>Behavior</subject><subject>Data collection</subject><subject>Deep learning</subject><subject>Human error</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Memory</subject><subject>Neural networks</subject><subject>Sensors</subject><subject>Tolls</subject><subject>Traffic accidents &amp; safety</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkd9PwjAQxxejiQR58S9Y4pMGsD822j4iKBIxJiqvLsd2GyWsw3Yj8t9bxES5Ptzl7vO96-WC4JKSPueK3LqGDggjMZUnQYsRQXuUxOT0X3wedJxbEW-cU0UHreDjGdKlNhjOEKzRpginxuliWbuwMuHY6u0-d4dL2OqqseF4Z6DUqQuhrHxhgrYEs-t6Yl3opuyGYLJw_vSjROsugrMc1g47v74dzB_u30ePvdnLZDoaznopH8i6h1EcK6QylQJoqmRGJGQ55MjJIs5gkUcCVMaimC2ymC4EQ4IsppEUUg4E5bwdXB36bmz12aCrk5X_rfEjE6aoFEpRyjzVP1AFrDHRJq9qC6l_GfqdKoO59vmhkEQxETHhBddHAs_U-FUX0DiXTN9ej9mbA5vayjmLebKxugS7SyhJ9vdJ_u7DvwGWsIAH</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Roussou, Stella</creator><creator>Garefalakis, Thodoris</creator><creator>Michelaraki, Eva</creator><creator>Brijs, Tom</creator><creator>Yannis, George</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7167-4630</orcidid><orcidid>https://orcid.org/0000-0003-2622-4398</orcidid><orcidid>https://orcid.org/0009-0002-3180-8291</orcidid><orcidid>https://orcid.org/0000-0003-0151-7864</orcidid><orcidid>https://orcid.org/0000-0002-2196-2335</orcidid></search><sort><creationdate>20240101</creationdate><title>Machine Learning Insights on Driving Behaviour Dynamics among Germany, Belgium, and UK Drivers</title><author>Roussou, Stella ; Garefalakis, Thodoris ; Michelaraki, Eva ; Brijs, Tom ; Yannis, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e4559e18c87a1c98d08adfafe30b5dabf47a9d2452bd51b72e0e2514878867133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Automobile drivers</topic><topic>Autonomous vehicles</topic><topic>Behavior</topic><topic>Data collection</topic><topic>Deep learning</topic><topic>Human error</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Memory</topic><topic>Neural networks</topic><topic>Sensors</topic><topic>Tolls</topic><topic>Traffic accidents &amp; safety</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roussou, Stella</creatorcontrib><creatorcontrib>Garefalakis, Thodoris</creatorcontrib><creatorcontrib>Michelaraki, Eva</creatorcontrib><creatorcontrib>Brijs, Tom</creatorcontrib><creatorcontrib>Yannis, George</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roussou, Stella</au><au>Garefalakis, Thodoris</au><au>Michelaraki, Eva</au><au>Brijs, Tom</au><au>Yannis, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Insights on Driving Behaviour Dynamics among Germany, Belgium, and UK Drivers</atitle><jtitle>Sustainability</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>518</spage><pages>518-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The i-DREAMS project has a core objective: to establish a comprehensive framework that defines, develops, and validates a context-aware ‘Safety Tolerance Zone’ (STZ). This zone is crucial for maintaining drivers within safe operational boundaries. The primary focus of this research is to conduct a detailed comparison between two machine learning approaches: long short-term memory networks and shallow neural networks. The goal is to evaluate the safety levels of participants as they engage in natural driving experiences within the i-DREAMS on-road field trials. To accomplish this objective, the study gathered a series of trips from a sample group consisting of 30 German drivers, 43 Belgian drivers, and 26 drivers from the United Kingdom. These trips were then input into the aforementioned machine learning methods to reveal the factors contributing to unsafe driving behaviour across various experiment stages. The results obtained highlight the significant positive impact of i-DREAMS’ real-time interventions and post-trip assessments on enhancing driving behaviour. Furthermore, it is worth noting that neural networks demonstrated superior performance compared to other algorithms considered within this research context.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16020518</doi><orcidid>https://orcid.org/0000-0002-7167-4630</orcidid><orcidid>https://orcid.org/0000-0003-2622-4398</orcidid><orcidid>https://orcid.org/0009-0002-3180-8291</orcidid><orcidid>https://orcid.org/0000-0003-0151-7864</orcidid><orcidid>https://orcid.org/0000-0002-2196-2335</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2024-01, Vol.16 (2), p.518
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2918799112
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Automobile drivers
Autonomous vehicles
Behavior
Data collection
Deep learning
Human error
Literature reviews
Machine learning
Memory
Neural networks
Sensors
Tolls
Traffic accidents & safety
title Machine Learning Insights on Driving Behaviour Dynamics among Germany, Belgium, and UK Drivers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A40%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Insights%20on%20Driving%20Behaviour%20Dynamics%20among%20Germany,%20Belgium,%20and%20UK%20Drivers&rft.jtitle=Sustainability&rft.au=Roussou,%20Stella&rft.date=2024-01-01&rft.volume=16&rft.issue=2&rft.spage=518&rft.pages=518-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16020518&rft_dat=%3Cgale_proqu%3EA780927427%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918799112&rft_id=info:pmid/&rft_galeid=A780927427&rfr_iscdi=true