Generalized Conditional Feedback System with Model Uncertainty
Model uncertainty creates a largely open challenge for industrial process control, which causes a trade-off between robustness and performance optimality. In such a case, we propose a generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and performance opti...
Gespeichert in:
Veröffentlicht in: | Processes 2024-01, Vol.12 (1), p.65 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Processes |
container_volume | 12 |
creator | Dai, Chengbo Gao, Zhiqiang Chen, Yangquan Li, Donghai |
description | Model uncertainty creates a largely open challenge for industrial process control, which causes a trade-off between robustness and performance optimality. In such a case, we propose a generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and performance optimality. This approach leverages a nominal model to design an optimal control in the virtual domain and defines an ancillary feedback controller to drive the physical process to track the trajectory of the virtual domain. The effectiveness of the proposed GCF scheme is demonstrated in a simulation for six typical industrial processes and three model-based control methods, and in a half-quadrotor system control test. Furthermore, the GCF scheme is open to existing optimal control and robust control theories. |
doi_str_mv | 10.3390/pr12010065 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918795659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780926330</galeid><sourcerecordid>A780926330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-282effafac8d2783725a05f0f63c8babeb18e566d2a694b95a498785dbae96a53</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqb34Cxa8CVvz0XxdhFJsFSoetOclm33R1O2mJimy_npXKuibw3sMM49hELokeMqYxjf7SCgmGAt-gkaUUllqSeTpv_scTVLa4mE0YYqLEbpdQQfRtP4LmmIRusZnHzrTFkuApjb2vXjuU4Zd8enzW_EYGmiLTWchZuO73F-gM2faBJPfPUab5d3L4r5cP60eFvN1aalmuaSKgnPGGasaKhWTlBvMHXaCWVWbGmqigAvRUCP0rNbczLSSig8JQAvD2RhdHf_uY_g4QMrVNhzikDNVVBMlNRdcD6rpUfVqWqh850KOxg5oYOdt6MD5gZ9LhTUVjOHBcH002BhSiuCqffQ7E_uK4Oqn0-qvU_YNXexoWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918795659</pqid></control><display><type>article</type><title>Generalized Conditional Feedback System with Model Uncertainty</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dai, Chengbo ; Gao, Zhiqiang ; Chen, Yangquan ; Li, Donghai</creator><creatorcontrib>Dai, Chengbo ; Gao, Zhiqiang ; Chen, Yangquan ; Li, Donghai</creatorcontrib><description>Model uncertainty creates a largely open challenge for industrial process control, which causes a trade-off between robustness and performance optimality. In such a case, we propose a generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and performance optimality. This approach leverages a nominal model to design an optimal control in the virtual domain and defines an ancillary feedback controller to drive the physical process to track the trajectory of the virtual domain. The effectiveness of the proposed GCF scheme is demonstrated in a simulation for six typical industrial processes and three model-based control methods, and in a half-quadrotor system control test. Furthermore, the GCF scheme is open to existing optimal control and robust control theories.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12010065</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Case studies ; Closed loop systems ; Control algorithms ; Control methods ; Control systems ; Controllers ; Design ; Feedback ; Feedback control ; Optimal control ; Optimization ; Process controls ; Robust control ; Simulation ; Uncertainty</subject><ispartof>Processes, 2024-01, Vol.12 (1), p.65</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-282effafac8d2783725a05f0f63c8babeb18e566d2a694b95a498785dbae96a53</cites><orcidid>0000-0002-7422-5988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dai, Chengbo</creatorcontrib><creatorcontrib>Gao, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Yangquan</creatorcontrib><creatorcontrib>Li, Donghai</creatorcontrib><title>Generalized Conditional Feedback System with Model Uncertainty</title><title>Processes</title><description>Model uncertainty creates a largely open challenge for industrial process control, which causes a trade-off between robustness and performance optimality. In such a case, we propose a generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and performance optimality. This approach leverages a nominal model to design an optimal control in the virtual domain and defines an ancillary feedback controller to drive the physical process to track the trajectory of the virtual domain. The effectiveness of the proposed GCF scheme is demonstrated in a simulation for six typical industrial processes and three model-based control methods, and in a half-quadrotor system control test. Furthermore, the GCF scheme is open to existing optimal control and robust control theories.</description><subject>Analysis</subject><subject>Case studies</subject><subject>Closed loop systems</subject><subject>Control algorithms</subject><subject>Control methods</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Process controls</subject><subject>Robust control</subject><subject>Simulation</subject><subject>Uncertainty</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUE1LAzEUDKJgqb34Cxa8CVvz0XxdhFJsFSoetOclm33R1O2mJimy_npXKuibw3sMM49hELokeMqYxjf7SCgmGAt-gkaUUllqSeTpv_scTVLa4mE0YYqLEbpdQQfRtP4LmmIRusZnHzrTFkuApjb2vXjuU4Zd8enzW_EYGmiLTWchZuO73F-gM2faBJPfPUab5d3L4r5cP60eFvN1aalmuaSKgnPGGasaKhWTlBvMHXaCWVWbGmqigAvRUCP0rNbczLSSig8JQAvD2RhdHf_uY_g4QMrVNhzikDNVVBMlNRdcD6rpUfVqWqh850KOxg5oYOdt6MD5gZ9LhTUVjOHBcH002BhSiuCqffQ7E_uK4Oqn0-qvU_YNXexoWA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Dai, Chengbo</creator><creator>Gao, Zhiqiang</creator><creator>Chen, Yangquan</creator><creator>Li, Donghai</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7422-5988</orcidid></search><sort><creationdate>20240101</creationdate><title>Generalized Conditional Feedback System with Model Uncertainty</title><author>Dai, Chengbo ; Gao, Zhiqiang ; Chen, Yangquan ; Li, Donghai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-282effafac8d2783725a05f0f63c8babeb18e566d2a694b95a498785dbae96a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Case studies</topic><topic>Closed loop systems</topic><topic>Control algorithms</topic><topic>Control methods</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Process controls</topic><topic>Robust control</topic><topic>Simulation</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Chengbo</creatorcontrib><creatorcontrib>Gao, Zhiqiang</creatorcontrib><creatorcontrib>Chen, Yangquan</creatorcontrib><creatorcontrib>Li, Donghai</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Chengbo</au><au>Gao, Zhiqiang</au><au>Chen, Yangquan</au><au>Li, Donghai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Conditional Feedback System with Model Uncertainty</atitle><jtitle>Processes</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>12</volume><issue>1</issue><spage>65</spage><pages>65-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Model uncertainty creates a largely open challenge for industrial process control, which causes a trade-off between robustness and performance optimality. In such a case, we propose a generalized conditional feedback (GCF) system to largely eliminate conflicts between robustness and performance optimality. This approach leverages a nominal model to design an optimal control in the virtual domain and defines an ancillary feedback controller to drive the physical process to track the trajectory of the virtual domain. The effectiveness of the proposed GCF scheme is demonstrated in a simulation for six typical industrial processes and three model-based control methods, and in a half-quadrotor system control test. Furthermore, the GCF scheme is open to existing optimal control and robust control theories.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12010065</doi><orcidid>https://orcid.org/0000-0002-7422-5988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-01, Vol.12 (1), p.65 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2918795659 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Analysis Case studies Closed loop systems Control algorithms Control methods Control systems Controllers Design Feedback Feedback control Optimal control Optimization Process controls Robust control Simulation Uncertainty |
title | Generalized Conditional Feedback System with Model Uncertainty |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Conditional%20Feedback%20System%20with%20Model%20Uncertainty&rft.jtitle=Processes&rft.au=Dai,%20Chengbo&rft.date=2024-01-01&rft.volume=12&rft.issue=1&rft.spage=65&rft.pages=65-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12010065&rft_dat=%3Cgale_proqu%3EA780926330%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918795659&rft_id=info:pmid/&rft_galeid=A780926330&rfr_iscdi=true |