A deep neural network and classical features based scheme for objects recognition: an application for machine inspection

Computer Vision (CV) domain is widely used in the current era of automation and visual surveillance for the detection and classification of different objects in a diverse environment. The automatic machine inspection of different objects in the scenes is based on internal and external parameters lik...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-02, Vol.83 (5), p.14935-14957
Hauptverfasser: Hussain, Nazar, Khan, Muhammad Attique, Sharif, Muhammad, Khan, Sajid Ali, Albesher, Abdulaziz A., Saba, Tanzila, Armaghan, Ammar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14957
container_issue 5
container_start_page 14935
container_title Multimedia tools and applications
container_volume 83
creator Hussain, Nazar
Khan, Muhammad Attique
Sharif, Muhammad
Khan, Sajid Ali
Albesher, Abdulaziz A.
Saba, Tanzila
Armaghan, Ammar
description Computer Vision (CV) domain is widely used in the current era of automation and visual surveillance for the detection and classification of different objects in a diverse environment. The automatic machine inspection of different objects in the scenes is based on internal and external parameters like features that provide a huge amount of information related to the nature of an object in the scene. In this work, we propose a new automated method based on classical and deep learning feature selection. The proposed object classification method follows three steps. The data augmentation is performed in the first step to make the balance database. Later, Pyramid HOG (PHOG) and Central Symmetric LBP (CS-LBP) features are serially fused along with deep learning-based extracted features. The deep learning features are extracted from the pre-trained CNN model name Inception V3. In the third step, a new technique name Joint Entropy along with KNN (JEKNN) is employed to select the best features. The best-selected features are finally classified by well-known supervised learning methods and choose the best one based on higher accuracy. The proposed method is evaluated on Caltech101 balanced dataset and achieved maximum accuracy of 90.4% on Ensemble classifier which outperforms as compare to existing techniques.
doi_str_mv 10.1007/s11042-020-08852-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918768050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918768050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6cb070a135bfd8e9454de373294bcfb9bf4cbffc75335d60de3ad6f317e20f0a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6M7ThO2FUVL6kSG1hbtjNuU9Ik2ImAv8dtkGDFal733JFuklxSuKYA8iZQChlLgUEKRSFYyo-SGRWSp1IyevynP03OQtgC0FywbJZ8LkiF2JMWR6-bWIaPzr8R3VbENjqE2satQz2MHgMxOmBFgt3gDonrPOnMFu0QiEfbrdt6qLv2NsJE930T0f180O203dQtkroNfQTi-jw5cboJePFT58nr_d3L8jFdPT88LRer1HJaDmluDUjQlAvjqgLLTGQVcslZmRnrTGlcZo1zVgrORZVDPOoqd5xKZOBA83lyNfn2vnsfMQxq242-jS8VK2kh8wIERBWbVNZ3IXh0qvf1TvsvRUHtE1ZTwiomrA4JKx4hPkEhits1-l_rf6hvCDGA1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918768050</pqid></control><display><type>article</type><title>A deep neural network and classical features based scheme for objects recognition: an application for machine inspection</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hussain, Nazar ; Khan, Muhammad Attique ; Sharif, Muhammad ; Khan, Sajid Ali ; Albesher, Abdulaziz A. ; Saba, Tanzila ; Armaghan, Ammar</creator><creatorcontrib>Hussain, Nazar ; Khan, Muhammad Attique ; Sharif, Muhammad ; Khan, Sajid Ali ; Albesher, Abdulaziz A. ; Saba, Tanzila ; Armaghan, Ammar</creatorcontrib><description>Computer Vision (CV) domain is widely used in the current era of automation and visual surveillance for the detection and classification of different objects in a diverse environment. The automatic machine inspection of different objects in the scenes is based on internal and external parameters like features that provide a huge amount of information related to the nature of an object in the scene. In this work, we propose a new automated method based on classical and deep learning feature selection. The proposed object classification method follows three steps. The data augmentation is performed in the first step to make the balance database. Later, Pyramid HOG (PHOG) and Central Symmetric LBP (CS-LBP) features are serially fused along with deep learning-based extracted features. The deep learning features are extracted from the pre-trained CNN model name Inception V3. In the third step, a new technique name Joint Entropy along with KNN (JEKNN) is employed to select the best features. The best-selected features are finally classified by well-known supervised learning methods and choose the best one based on higher accuracy. The proposed method is evaluated on Caltech101 balanced dataset and achieved maximum accuracy of 90.4% on Ensemble classifier which outperforms as compare to existing techniques.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-020-08852-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Automation ; Classification ; Computer Communication Networks ; Computer Science ; Computer vision ; Data augmentation ; Data Structures and Information Theory ; Deep learning ; Inspection ; Machine learning ; Multimedia Information Systems ; Object recognition ; Special Purpose and Application-Based Systems ; Supervised learning</subject><ispartof>Multimedia tools and applications, 2024-02, Vol.83 (5), p.14935-14957</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6cb070a135bfd8e9454de373294bcfb9bf4cbffc75335d60de3ad6f317e20f0a3</citedby><cites>FETCH-LOGICAL-c319t-6cb070a135bfd8e9454de373294bcfb9bf4cbffc75335d60de3ad6f317e20f0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-020-08852-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-020-08852-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Hussain, Nazar</creatorcontrib><creatorcontrib>Khan, Muhammad Attique</creatorcontrib><creatorcontrib>Sharif, Muhammad</creatorcontrib><creatorcontrib>Khan, Sajid Ali</creatorcontrib><creatorcontrib>Albesher, Abdulaziz A.</creatorcontrib><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Armaghan, Ammar</creatorcontrib><title>A deep neural network and classical features based scheme for objects recognition: an application for machine inspection</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Computer Vision (CV) domain is widely used in the current era of automation and visual surveillance for the detection and classification of different objects in a diverse environment. The automatic machine inspection of different objects in the scenes is based on internal and external parameters like features that provide a huge amount of information related to the nature of an object in the scene. In this work, we propose a new automated method based on classical and deep learning feature selection. The proposed object classification method follows three steps. The data augmentation is performed in the first step to make the balance database. Later, Pyramid HOG (PHOG) and Central Symmetric LBP (CS-LBP) features are serially fused along with deep learning-based extracted features. The deep learning features are extracted from the pre-trained CNN model name Inception V3. In the third step, a new technique name Joint Entropy along with KNN (JEKNN) is employed to select the best features. The best-selected features are finally classified by well-known supervised learning methods and choose the best one based on higher accuracy. The proposed method is evaluated on Caltech101 balanced dataset and achieved maximum accuracy of 90.4% on Ensemble classifier which outperforms as compare to existing techniques.</description><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data augmentation</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Inspection</subject><subject>Machine learning</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Special Purpose and Application-Based Systems</subject><subject>Supervised learning</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ6M7ThO2FUVL6kSG1hbtjNuU9Ik2ImAv8dtkGDFal733JFuklxSuKYA8iZQChlLgUEKRSFYyo-SGRWSp1IyevynP03OQtgC0FywbJZ8LkiF2JMWR6-bWIaPzr8R3VbENjqE2satQz2MHgMxOmBFgt3gDonrPOnMFu0QiEfbrdt6qLv2NsJE930T0f180O203dQtkroNfQTi-jw5cboJePFT58nr_d3L8jFdPT88LRer1HJaDmluDUjQlAvjqgLLTGQVcslZmRnrTGlcZo1zVgrORZVDPOoqd5xKZOBA83lyNfn2vnsfMQxq242-jS8VK2kh8wIERBWbVNZ3IXh0qvf1TvsvRUHtE1ZTwiomrA4JKx4hPkEhits1-l_rf6hvCDGA1g</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hussain, Nazar</creator><creator>Khan, Muhammad Attique</creator><creator>Sharif, Muhammad</creator><creator>Khan, Sajid Ali</creator><creator>Albesher, Abdulaziz A.</creator><creator>Saba, Tanzila</creator><creator>Armaghan, Ammar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240201</creationdate><title>A deep neural network and classical features based scheme for objects recognition: an application for machine inspection</title><author>Hussain, Nazar ; Khan, Muhammad Attique ; Sharif, Muhammad ; Khan, Sajid Ali ; Albesher, Abdulaziz A. ; Saba, Tanzila ; Armaghan, Ammar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6cb070a135bfd8e9454de373294bcfb9bf4cbffc75335d60de3ad6f317e20f0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data augmentation</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Inspection</topic><topic>Machine learning</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Special Purpose and Application-Based Systems</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Nazar</creatorcontrib><creatorcontrib>Khan, Muhammad Attique</creatorcontrib><creatorcontrib>Sharif, Muhammad</creatorcontrib><creatorcontrib>Khan, Sajid Ali</creatorcontrib><creatorcontrib>Albesher, Abdulaziz A.</creatorcontrib><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Armaghan, Ammar</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Nazar</au><au>Khan, Muhammad Attique</au><au>Sharif, Muhammad</au><au>Khan, Sajid Ali</au><au>Albesher, Abdulaziz A.</au><au>Saba, Tanzila</au><au>Armaghan, Ammar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep neural network and classical features based scheme for objects recognition: an application for machine inspection</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>83</volume><issue>5</issue><spage>14935</spage><epage>14957</epage><pages>14935-14957</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Computer Vision (CV) domain is widely used in the current era of automation and visual surveillance for the detection and classification of different objects in a diverse environment. The automatic machine inspection of different objects in the scenes is based on internal and external parameters like features that provide a huge amount of information related to the nature of an object in the scene. In this work, we propose a new automated method based on classical and deep learning feature selection. The proposed object classification method follows three steps. The data augmentation is performed in the first step to make the balance database. Later, Pyramid HOG (PHOG) and Central Symmetric LBP (CS-LBP) features are serially fused along with deep learning-based extracted features. The deep learning features are extracted from the pre-trained CNN model name Inception V3. In the third step, a new technique name Joint Entropy along with KNN (JEKNN) is employed to select the best features. The best-selected features are finally classified by well-known supervised learning methods and choose the best one based on higher accuracy. The proposed method is evaluated on Caltech101 balanced dataset and achieved maximum accuracy of 90.4% on Ensemble classifier which outperforms as compare to existing techniques.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-020-08852-3</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-02, Vol.83 (5), p.14935-14957
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2918768050
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Automation
Classification
Computer Communication Networks
Computer Science
Computer vision
Data augmentation
Data Structures and Information Theory
Deep learning
Inspection
Machine learning
Multimedia Information Systems
Object recognition
Special Purpose and Application-Based Systems
Supervised learning
title A deep neural network and classical features based scheme for objects recognition: an application for machine inspection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20neural%20network%20and%20classical%20features%20based%20scheme%20for%20objects%20recognition:%20an%20application%20for%20machine%20inspection&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Hussain,%20Nazar&rft.date=2024-02-01&rft.volume=83&rft.issue=5&rft.spage=14935&rft.epage=14957&rft.pages=14935-14957&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-020-08852-3&rft_dat=%3Cproquest_cross%3E2918768050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918768050&rft_id=info:pmid/&rfr_iscdi=true