Recognition and Translation of Ancient South Arabian Musnad Inscriptions

Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2023, Vol.14 (12)
Hauptverfasser: Altalhi, Afnan, Alwethinani, Atheer, Alghamdi, Bashaer, Mutahhar, Jumanah, Almatrafi, Wojood, Noorwali, Seereen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title International journal of advanced computer science & applications
container_volume 14
creator Altalhi, Afnan
Alwethinani, Atheer
Alghamdi, Bashaer
Mutahhar, Jumanah
Almatrafi, Wojood
Noorwali, Seereen
description Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.
doi_str_mv 10.14569/IJACSA.2023.01412100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918764174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918764174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-52b93f65bb130a8c989b18ff98b9d90e8528efa792aa0f63eb7f0ec1d739dda53</originalsourceid><addsrcrecordid>eNo1kMtKAzEUhoMoWGofQQi4nprL5LYcitpKRbAV3IUkk-iUmtRkZuHb96Znc86Bj_-HD4BbjKa4ZlzdL56b2aqZEkToFOEaE4zQBRgRzHjFmECXp1tWGImPazApZYMOQxXhko7A_M279Bm7vksRmtjCdTaxbM3pTwE20XU-9nCVhv4LNtnYzkT4MpRoWriIxeVud2TLDbgKZlv85G-Pwfvjw3o2r5avT4tZs6wcEbyvGLGKBs6sxRQZ6ZRUFssQlLSqVchLRqQPRihiDAqceisC8g63gqq2NYyOwd05d5fTz-BLrzdpyPFQqYnCUvAai_pAsTPlciol-6B3ufs2-VdjpE_e9NmbPnrT_97oHqzKYPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918764174</pqid></control><display><type>article</type><title>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Altalhi, Afnan ; Alwethinani, Atheer ; Alghamdi, Bashaer ; Mutahhar, Jumanah ; Almatrafi, Wojood ; Noorwali, Seereen</creator><creatorcontrib>Altalhi, Afnan ; Alwethinani, Atheer ; Alghamdi, Bashaer ; Mutahhar, Jumanah ; Almatrafi, Wojood ; Noorwali, Seereen</creatorcontrib><description>Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.01412100</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Artificial neural networks ; Cultural heritage ; Cultural resources ; Datasets ; Image enhancement ; Image quality ; Inscriptions</subject><ispartof>International journal of advanced computer science &amp; applications, 2023, Vol.14 (12)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Altalhi, Afnan</creatorcontrib><creatorcontrib>Alwethinani, Atheer</creatorcontrib><creatorcontrib>Alghamdi, Bashaer</creatorcontrib><creatorcontrib>Mutahhar, Jumanah</creatorcontrib><creatorcontrib>Almatrafi, Wojood</creatorcontrib><creatorcontrib>Noorwali, Seereen</creatorcontrib><title>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</title><title>International journal of advanced computer science &amp; applications</title><description>Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.</description><subject>Artificial neural networks</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Datasets</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Inscriptions</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kMtKAzEUhoMoWGofQQi4nprL5LYcitpKRbAV3IUkk-iUmtRkZuHb96Znc86Bj_-HD4BbjKa4ZlzdL56b2aqZEkToFOEaE4zQBRgRzHjFmECXp1tWGImPazApZYMOQxXhko7A_M279Bm7vksRmtjCdTaxbM3pTwE20XU-9nCVhv4LNtnYzkT4MpRoWriIxeVud2TLDbgKZlv85G-Pwfvjw3o2r5avT4tZs6wcEbyvGLGKBs6sxRQZ6ZRUFssQlLSqVchLRqQPRihiDAqceisC8g63gqq2NYyOwd05d5fTz-BLrzdpyPFQqYnCUvAai_pAsTPlciol-6B3ufs2-VdjpE_e9NmbPnrT_97oHqzKYPU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Altalhi, Afnan</creator><creator>Alwethinani, Atheer</creator><creator>Alghamdi, Bashaer</creator><creator>Mutahhar, Jumanah</creator><creator>Almatrafi, Wojood</creator><creator>Noorwali, Seereen</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</title><author>Altalhi, Afnan ; Alwethinani, Atheer ; Alghamdi, Bashaer ; Mutahhar, Jumanah ; Almatrafi, Wojood ; Noorwali, Seereen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-52b93f65bb130a8c989b18ff98b9d90e8528efa792aa0f63eb7f0ec1d739dda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Datasets</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Inscriptions</topic><toplevel>online_resources</toplevel><creatorcontrib>Altalhi, Afnan</creatorcontrib><creatorcontrib>Alwethinani, Atheer</creatorcontrib><creatorcontrib>Alghamdi, Bashaer</creatorcontrib><creatorcontrib>Mutahhar, Jumanah</creatorcontrib><creatorcontrib>Almatrafi, Wojood</creatorcontrib><creatorcontrib>Noorwali, Seereen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altalhi, Afnan</au><au>Alwethinani, Atheer</au><au>Alghamdi, Bashaer</au><au>Mutahhar, Jumanah</au><au>Almatrafi, Wojood</au><au>Noorwali, Seereen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>12</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.01412100</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2023, Vol.14 (12)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_2918764174
source EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Cultural heritage
Cultural resources
Datasets
Image enhancement
Image quality
Inscriptions
title Recognition and Translation of Ancient South Arabian Musnad Inscriptions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20and%20Translation%20of%20Ancient%20South%20Arabian%20Musnad%20Inscriptions&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Altalhi,%20Afnan&rft.date=2023&rft.volume=14&rft.issue=12&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.01412100&rft_dat=%3Cproquest_cross%3E2918764174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918764174&rft_id=info:pmid/&rfr_iscdi=true