Recognition and Translation of Ancient South Arabian Musnad Inscriptions
Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, p...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2023, Vol.14 (12) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 14 |
creator | Altalhi, Afnan Alwethinani, Atheer Alghamdi, Bashaer Mutahhar, Jumanah Almatrafi, Wojood Noorwali, Seereen |
description | Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%. |
doi_str_mv | 10.14569/IJACSA.2023.01412100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918764174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918764174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-52b93f65bb130a8c989b18ff98b9d90e8528efa792aa0f63eb7f0ec1d739dda53</originalsourceid><addsrcrecordid>eNo1kMtKAzEUhoMoWGofQQi4nprL5LYcitpKRbAV3IUkk-iUmtRkZuHb96Znc86Bj_-HD4BbjKa4ZlzdL56b2aqZEkToFOEaE4zQBRgRzHjFmECXp1tWGImPazApZYMOQxXhko7A_M279Bm7vksRmtjCdTaxbM3pTwE20XU-9nCVhv4LNtnYzkT4MpRoWriIxeVud2TLDbgKZlv85G-Pwfvjw3o2r5avT4tZs6wcEbyvGLGKBs6sxRQZ6ZRUFssQlLSqVchLRqQPRihiDAqceisC8g63gqq2NYyOwd05d5fTz-BLrzdpyPFQqYnCUvAai_pAsTPlciol-6B3ufs2-VdjpE_e9NmbPnrT_97oHqzKYPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918764174</pqid></control><display><type>article</type><title>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Altalhi, Afnan ; Alwethinani, Atheer ; Alghamdi, Bashaer ; Mutahhar, Jumanah ; Almatrafi, Wojood ; Noorwali, Seereen</creator><creatorcontrib>Altalhi, Afnan ; Alwethinani, Atheer ; Alghamdi, Bashaer ; Mutahhar, Jumanah ; Almatrafi, Wojood ; Noorwali, Seereen</creatorcontrib><description>Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2023.01412100</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Artificial neural networks ; Cultural heritage ; Cultural resources ; Datasets ; Image enhancement ; Image quality ; Inscriptions</subject><ispartof>International journal of advanced computer science & applications, 2023, Vol.14 (12)</ispartof><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Altalhi, Afnan</creatorcontrib><creatorcontrib>Alwethinani, Atheer</creatorcontrib><creatorcontrib>Alghamdi, Bashaer</creatorcontrib><creatorcontrib>Mutahhar, Jumanah</creatorcontrib><creatorcontrib>Almatrafi, Wojood</creatorcontrib><creatorcontrib>Noorwali, Seereen</creatorcontrib><title>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</title><title>International journal of advanced computer science & applications</title><description>Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.</description><subject>Artificial neural networks</subject><subject>Cultural heritage</subject><subject>Cultural resources</subject><subject>Datasets</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Inscriptions</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo1kMtKAzEUhoMoWGofQQi4nprL5LYcitpKRbAV3IUkk-iUmtRkZuHb96Znc86Bj_-HD4BbjKa4ZlzdL56b2aqZEkToFOEaE4zQBRgRzHjFmECXp1tWGImPazApZYMOQxXhko7A_M279Bm7vksRmtjCdTaxbM3pTwE20XU-9nCVhv4LNtnYzkT4MpRoWriIxeVud2TLDbgKZlv85G-Pwfvjw3o2r5avT4tZs6wcEbyvGLGKBs6sxRQZ6ZRUFssQlLSqVchLRqQPRihiDAqceisC8g63gqq2NYyOwd05d5fTz-BLrzdpyPFQqYnCUvAai_pAsTPlciol-6B3ufs2-VdjpE_e9NmbPnrT_97oHqzKYPU</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Altalhi, Afnan</creator><creator>Alwethinani, Atheer</creator><creator>Alghamdi, Bashaer</creator><creator>Mutahhar, Jumanah</creator><creator>Almatrafi, Wojood</creator><creator>Noorwali, Seereen</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>2023</creationdate><title>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</title><author>Altalhi, Afnan ; Alwethinani, Atheer ; Alghamdi, Bashaer ; Mutahhar, Jumanah ; Almatrafi, Wojood ; Noorwali, Seereen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-52b93f65bb130a8c989b18ff98b9d90e8528efa792aa0f63eb7f0ec1d739dda53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cultural heritage</topic><topic>Cultural resources</topic><topic>Datasets</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Inscriptions</topic><toplevel>online_resources</toplevel><creatorcontrib>Altalhi, Afnan</creatorcontrib><creatorcontrib>Alwethinani, Atheer</creatorcontrib><creatorcontrib>Alghamdi, Bashaer</creatorcontrib><creatorcontrib>Mutahhar, Jumanah</creatorcontrib><creatorcontrib>Almatrafi, Wojood</creatorcontrib><creatorcontrib>Noorwali, Seereen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Altalhi, Afnan</au><au>Alwethinani, Atheer</au><au>Alghamdi, Bashaer</au><au>Mutahhar, Jumanah</au><au>Almatrafi, Wojood</au><au>Noorwali, Seereen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recognition and Translation of Ancient South Arabian Musnad Inscriptions</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2023</date><risdate>2023</risdate><volume>14</volume><issue>12</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Inscriptions play an important role in preserving historical information. As such, conservation of these inscriptions provides valuable insights into the history and cultural heritage of the region. Musnad inscriptions are considered one of the earliest forms of writing from the Arabian Peninsula, preceding the modern Arabic font; however, most Musnad inscriptions remain unread and untranslated, signifying a substantial loss of historical information. In response, this paper represents a significant contribution to the field by proposing a successful approach to interpreting Musnad inscriptions. To do so, a dataset was prepared from the Saudi Arabian Ministry of Culture and subjected to preprocessing for optimal recognition, a step that entailed several experiments to enhance image quality and preparedness for recognition. The dataset was then trained and tested with 29 classes using three different convolutional neural network (CNN) architectures: Visual Geometry Group 16 (VGG16), Residual Network 50 (ResNet50) and MobileNetV2. Thereafter, the performance of each architecture was evaluated based on its accuracy in recognising Musnad inscriptions. The results demonstrate that VGG16 achieved the highest accuracy of 93.81%, followed by ResNet50 at 89.39% and MobileNetV2 at 80.02%.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2023.01412100</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2023, Vol.14 (12) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_2918764174 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Cultural heritage Cultural resources Datasets Image enhancement Image quality Inscriptions |
title | Recognition and Translation of Ancient South Arabian Musnad Inscriptions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A20%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recognition%20and%20Translation%20of%20Ancient%20South%20Arabian%20Musnad%20Inscriptions&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=Altalhi,%20Afnan&rft.date=2023&rft.volume=14&rft.issue=12&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2023.01412100&rft_dat=%3Cproquest_cross%3E2918764174%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918764174&rft_id=info:pmid/&rfr_iscdi=true |