Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context

Elements of statistical modeling can be implemented already in primary school. A prerequisite for this approach is that teachers are well-educated in this domain. Content knowledge, pedagogical content knowledge and (pedagogical) content related technological knowledge are core components of teacher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ZDM 2018-12, Vol.50 (7), p.1237-1251
Hauptverfasser: Biehler, Rolf, Frischemeier, Daniel, Podworny, Susanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1251
container_issue 7
container_start_page 1237
container_title ZDM
container_volume 50
creator Biehler, Rolf
Frischemeier, Daniel
Podworny, Susanne
description Elements of statistical modeling can be implemented already in primary school. A prerequisite for this approach is that teachers are well-educated in this domain. Content knowledge, pedagogical content knowledge and (pedagogical) content related technological knowledge are core components of teacher education. We designed a course for elementary preservice teachers with regard to developing statistical thinking including the mentioned knowledge facets. The course includes exploring data and modeling and simulating chance experiments with TinkerPlots. We use the ‘data factory metaphor’ in fictive contexts and in contexts stemming from civic statistics for supporting the idea of modeling. We interviewed four participants of the course to assess and analyze their reasoning. We analyze how they model a given civic statistics contextual problem using the TinkerPlots sampler and how they evaluate their model with regard to a civic statistics context (the situation of hospitals in Germany).
doi_str_mv 10.1007/s11858-018-1001-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918758882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1195847</ericid><sourcerecordid>2918758882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-f07f11746de96520bd2b63c21838fb5cd2c224497f41e267e0b87cf847d20e1a3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwABZIllgHPE5iO0tUlT8hsYG15TiT4qpNiu2isuMaXI-T4CpAV6xmRt9786RHyCmwC2BMXgYAVaqMgcrSDdlmj4xAiTyrJCv2f3dRsUNyFMKcMS5EXo1IM13gErto_DtdeQzo35xFGtHYF_Th6-OTejSh71w3o6bu15GGaKIL0VmzoMu-wcUWuY4aal0y73igtu8ibuIxOWjNIuDJzxyT5-vp0-Q2e3i8uZtcPWQ2z1XMWiZbAFmIBitRclY3vBa55aBy1dalbbjlvCgq2RaAXEhktZK2VYVsOEMw-ZicD39Xvn9dY4h63q99lyI1r0DJUinFkwoGlfV9CB5bvfJumQrQwPS2TD2UqVOZ2xv0JnnOBg96Z__003uAqkz5ifOBh8S6Gfpd8v9PvwFFGYOr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918758882</pqid></control><display><type>article</type><title>Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>SpringerNature Journals</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Biehler, Rolf ; Frischemeier, Daniel ; Podworny, Susanne</creator><creatorcontrib>Biehler, Rolf ; Frischemeier, Daniel ; Podworny, Susanne</creatorcontrib><description>Elements of statistical modeling can be implemented already in primary school. A prerequisite for this approach is that teachers are well-educated in this domain. Content knowledge, pedagogical content knowledge and (pedagogical) content related technological knowledge are core components of teacher education. We designed a course for elementary preservice teachers with regard to developing statistical thinking including the mentioned knowledge facets. The course includes exploring data and modeling and simulating chance experiments with TinkerPlots. We use the ‘data factory metaphor’ in fictive contexts and in contexts stemming from civic statistics for supporting the idea of modeling. We interviewed four participants of the course to assess and analyze their reasoning. We analyze how they model a given civic statistics contextual problem using the TinkerPlots sampler and how they evaluate their model with regard to a civic statistics context (the situation of hospitals in Germany).</description><identifier>ISSN: 1863-9690</identifier><identifier>EISSN: 1863-9704</identifier><identifier>DOI: 10.1007/s11858-018-1001-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Civics ; Combinatorics ; Computer Software ; Context ; Core curriculum ; Course Content ; Course Descriptions ; Data Analysis ; Design ; Education ; Elementary School Students ; Elementary School Teachers ; Experiments ; Foreign Countries ; Hospitals ; Knowledge ; Learning ; Mathematical Models ; Mathematics ; Mathematics Curriculum ; Mathematics Education ; Mathematics Instruction ; Original Article ; Pedagogical Content Knowledge ; Pedagogy ; Preservice Teacher Education ; Preservice Teachers ; Probability ; Reasoning ; Simulation ; Software ; Statistical models ; Statistics ; Statistics Education ; Student Attitudes ; Students ; Teacher education ; Teacher Education Programs ; Teachers ; Teaching ; Teaching Methods ; Technological Literacy ; Thinking Skills</subject><ispartof>ZDM, 2018-12, Vol.50 (7), p.1237-1251</ispartof><rights>FIZ Karlsruhe 2018</rights><rights>FIZ Karlsruhe 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-f07f11746de96520bd2b63c21838fb5cd2c224497f41e267e0b87cf847d20e1a3</citedby><cites>FETCH-LOGICAL-c338t-f07f11746de96520bd2b63c21838fb5cd2c224497f41e267e0b87cf847d20e1a3</cites><orcidid>0000-0002-9815-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11858-018-1001-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918758882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1195847$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Biehler, Rolf</creatorcontrib><creatorcontrib>Frischemeier, Daniel</creatorcontrib><creatorcontrib>Podworny, Susanne</creatorcontrib><title>Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context</title><title>ZDM</title><addtitle>ZDM Mathematics Education</addtitle><description>Elements of statistical modeling can be implemented already in primary school. A prerequisite for this approach is that teachers are well-educated in this domain. Content knowledge, pedagogical content knowledge and (pedagogical) content related technological knowledge are core components of teacher education. We designed a course for elementary preservice teachers with regard to developing statistical thinking including the mentioned knowledge facets. The course includes exploring data and modeling and simulating chance experiments with TinkerPlots. We use the ‘data factory metaphor’ in fictive contexts and in contexts stemming from civic statistics for supporting the idea of modeling. We interviewed four participants of the course to assess and analyze their reasoning. We analyze how they model a given civic statistics contextual problem using the TinkerPlots sampler and how they evaluate their model with regard to a civic statistics context (the situation of hospitals in Germany).</description><subject>Civics</subject><subject>Combinatorics</subject><subject>Computer Software</subject><subject>Context</subject><subject>Core curriculum</subject><subject>Course Content</subject><subject>Course Descriptions</subject><subject>Data Analysis</subject><subject>Design</subject><subject>Education</subject><subject>Elementary School Students</subject><subject>Elementary School Teachers</subject><subject>Experiments</subject><subject>Foreign Countries</subject><subject>Hospitals</subject><subject>Knowledge</subject><subject>Learning</subject><subject>Mathematical Models</subject><subject>Mathematics</subject><subject>Mathematics Curriculum</subject><subject>Mathematics Education</subject><subject>Mathematics Instruction</subject><subject>Original Article</subject><subject>Pedagogical Content Knowledge</subject><subject>Pedagogy</subject><subject>Preservice Teacher Education</subject><subject>Preservice Teachers</subject><subject>Probability</subject><subject>Reasoning</subject><subject>Simulation</subject><subject>Software</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Statistics Education</subject><subject>Student Attitudes</subject><subject>Students</subject><subject>Teacher education</subject><subject>Teacher Education Programs</subject><subject>Teachers</subject><subject>Teaching</subject><subject>Teaching Methods</subject><subject>Technological Literacy</subject><subject>Thinking Skills</subject><issn>1863-9690</issn><issn>1863-9704</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1OwzAQhS0EEqVwABZIllgHPE5iO0tUlT8hsYG15TiT4qpNiu2isuMaXI-T4CpAV6xmRt9786RHyCmwC2BMXgYAVaqMgcrSDdlmj4xAiTyrJCv2f3dRsUNyFMKcMS5EXo1IM13gErto_DtdeQzo35xFGtHYF_Th6-OTejSh71w3o6bu15GGaKIL0VmzoMu-wcUWuY4aal0y73igtu8ibuIxOWjNIuDJzxyT5-vp0-Q2e3i8uZtcPWQ2z1XMWiZbAFmIBitRclY3vBa55aBy1dalbbjlvCgq2RaAXEhktZK2VYVsOEMw-ZicD39Xvn9dY4h63q99lyI1r0DJUinFkwoGlfV9CB5bvfJumQrQwPS2TD2UqVOZ2xv0JnnOBg96Z__003uAqkz5ifOBh8S6Gfpd8v9PvwFFGYOr</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Biehler, Rolf</creator><creator>Frischemeier, Daniel</creator><creator>Podworny, Susanne</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88B</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CJNVE</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0P</scope><scope>P62</scope><scope>PQEDU</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9815-1282</orcidid></search><sort><creationdate>20181201</creationdate><title>Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context</title><author>Biehler, Rolf ; Frischemeier, Daniel ; Podworny, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-f07f11746de96520bd2b63c21838fb5cd2c224497f41e267e0b87cf847d20e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Civics</topic><topic>Combinatorics</topic><topic>Computer Software</topic><topic>Context</topic><topic>Core curriculum</topic><topic>Course Content</topic><topic>Course Descriptions</topic><topic>Data Analysis</topic><topic>Design</topic><topic>Education</topic><topic>Elementary School Students</topic><topic>Elementary School Teachers</topic><topic>Experiments</topic><topic>Foreign Countries</topic><topic>Hospitals</topic><topic>Knowledge</topic><topic>Learning</topic><topic>Mathematical Models</topic><topic>Mathematics</topic><topic>Mathematics Curriculum</topic><topic>Mathematics Education</topic><topic>Mathematics Instruction</topic><topic>Original Article</topic><topic>Pedagogical Content Knowledge</topic><topic>Pedagogy</topic><topic>Preservice Teacher Education</topic><topic>Preservice Teachers</topic><topic>Probability</topic><topic>Reasoning</topic><topic>Simulation</topic><topic>Software</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Statistics Education</topic><topic>Student Attitudes</topic><topic>Students</topic><topic>Teacher education</topic><topic>Teacher Education Programs</topic><topic>Teachers</topic><topic>Teaching</topic><topic>Teaching Methods</topic><topic>Technological Literacy</topic><topic>Thinking Skills</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biehler, Rolf</creatorcontrib><creatorcontrib>Frischemeier, Daniel</creatorcontrib><creatorcontrib>Podworny, Susanne</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Education Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Education Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Education Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Education</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>ZDM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biehler, Rolf</au><au>Frischemeier, Daniel</au><au>Podworny, Susanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1195847</ericid><atitle>Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context</atitle><jtitle>ZDM</jtitle><stitle>ZDM Mathematics Education</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>50</volume><issue>7</issue><spage>1237</spage><epage>1251</epage><pages>1237-1251</pages><issn>1863-9690</issn><eissn>1863-9704</eissn><abstract>Elements of statistical modeling can be implemented already in primary school. A prerequisite for this approach is that teachers are well-educated in this domain. Content knowledge, pedagogical content knowledge and (pedagogical) content related technological knowledge are core components of teacher education. We designed a course for elementary preservice teachers with regard to developing statistical thinking including the mentioned knowledge facets. The course includes exploring data and modeling and simulating chance experiments with TinkerPlots. We use the ‘data factory metaphor’ in fictive contexts and in contexts stemming from civic statistics for supporting the idea of modeling. We interviewed four participants of the course to assess and analyze their reasoning. We analyze how they model a given civic statistics contextual problem using the TinkerPlots sampler and how they evaluate their model with regard to a civic statistics context (the situation of hospitals in Germany).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11858-018-1001-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9815-1282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-9690
ispartof ZDM, 2018-12, Vol.50 (7), p.1237-1251
issn 1863-9690
1863-9704
language eng
recordid cdi_proquest_journals_2918758882
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; SpringerNature Journals; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central
subjects Civics
Combinatorics
Computer Software
Context
Core curriculum
Course Content
Course Descriptions
Data Analysis
Design
Education
Elementary School Students
Elementary School Teachers
Experiments
Foreign Countries
Hospitals
Knowledge
Learning
Mathematical Models
Mathematics
Mathematics Curriculum
Mathematics Education
Mathematics Instruction
Original Article
Pedagogical Content Knowledge
Pedagogy
Preservice Teacher Education
Preservice Teachers
Probability
Reasoning
Simulation
Software
Statistical models
Statistics
Statistics Education
Student Attitudes
Students
Teacher education
Teacher Education Programs
Teachers
Teaching
Teaching Methods
Technological Literacy
Thinking Skills
title Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elementary%20preservice%20teachers%E2%80%99%20reasoning%20about%20statistical%20modeling%20in%20a%20civic%20statistics%20context&rft.jtitle=ZDM&rft.au=Biehler,%20Rolf&rft.date=2018-12-01&rft.volume=50&rft.issue=7&rft.spage=1237&rft.epage=1251&rft.pages=1237-1251&rft.issn=1863-9690&rft.eissn=1863-9704&rft_id=info:doi/10.1007/s11858-018-1001-x&rft_dat=%3Cproquest_cross%3E2918758882%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918758882&rft_id=info:pmid/&rft_ericid=EJ1195847&rfr_iscdi=true