A Riemannian Tool for Clustering of Geo-Spatial Multivariate Data

Geological modeling is essential for the characterization of natural phenomena and can be done in two steps: (1) clustering the data into consistent groups and (2) modeling the extent of these groups in space to define domains, honoring the labels defined in the previous step. The clustering step ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical geosciences 2024, Vol.56 (1), p.121-141
Hauptverfasser: Riquelme, Álvaro I., Ortiz, Julian M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 121
container_title Mathematical geosciences
container_volume 56
creator Riquelme, Álvaro I.
Ortiz, Julian M.
description Geological modeling is essential for the characterization of natural phenomena and can be done in two steps: (1) clustering the data into consistent groups and (2) modeling the extent of these groups in space to define domains, honoring the labels defined in the previous step. The clustering step can be based on the information of continuous multivariate data in space instead of relying on the geological logging provided. However, extracting coherent spatial multivariate information is challenging when the variables show complex relationships, such as nonlinear correlation, heteroscedastic behavior, or spatial trends. In this work, we propose a method for clustering data, valid for domaining when multiple continuous variables are available and robust enough to deal with cases where complex relationships are found. The method looks at the local correlation matrix between variables at sample locations inferred in a local neighborhood. Changes in the local correlation between these attributes in space can be used to characterize the domains. By endowing the space of correlation matrices with a manifold structure, matrices are then clustered by adapting the K -means algorithm to this manifold context, using Riemannian geometry tools. A real case study illustrates the methodology. This example demonstrates how the clustering methodology proposed honors the spatial configuration of data delivering spatially connected clusters even when complex nonlinear relationships in the attribute space are shown.
doi_str_mv 10.1007/s11004-023-10085-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918758093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918758093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-1261841ce0bd3f61a38aa503f76cab29000fb3375422660c06b19ec5aa8d1b4e3</originalsourceid><addsrcrecordid>eNp9kEFLxDAUhIMouK7-AU8Bz9GXpE3b47LqKqwIup7DazeRLt2mJqngvzda0ZunN4eZecxHyDmHSw5QXAWeTsZASJZEmbPigMx4WWSsrHJ5-KsVPyYnIewAFJc5n5HFgj61Zo9932JPN8511DpPl90YovFt_0qdpSvj2POAscWOPoxdbN_RtxgNvcaIp-TIYhfM2c-dk5fbm83yjq0fV_fLxZqhqGRkXCheZrwxUG-lVRxliZiDtIVqsBYVANhayiLPhFAKGlA1r0yTI5ZbXmdGzsnF1Dt49zaaEPXOjb5PL7Wo0ry8hEoml5hcjXcheGP14Ns9-g_NQX-h0hMqnVDpb1S6SCE5hcLwNdn4v-p_Up8d3Woh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918758093</pqid></control><display><type>article</type><title>A Riemannian Tool for Clustering of Geo-Spatial Multivariate Data</title><source>SpringerLink Journals</source><creator>Riquelme, Álvaro I. ; Ortiz, Julian M.</creator><creatorcontrib>Riquelme, Álvaro I. ; Ortiz, Julian M.</creatorcontrib><description>Geological modeling is essential for the characterization of natural phenomena and can be done in two steps: (1) clustering the data into consistent groups and (2) modeling the extent of these groups in space to define domains, honoring the labels defined in the previous step. The clustering step can be based on the information of continuous multivariate data in space instead of relying on the geological logging provided. However, extracting coherent spatial multivariate information is challenging when the variables show complex relationships, such as nonlinear correlation, heteroscedastic behavior, or spatial trends. In this work, we propose a method for clustering data, valid for domaining when multiple continuous variables are available and robust enough to deal with cases where complex relationships are found. The method looks at the local correlation matrix between variables at sample locations inferred in a local neighborhood. Changes in the local correlation between these attributes in space can be used to characterize the domains. By endowing the space of correlation matrices with a manifold structure, matrices are then clustered by adapting the K -means algorithm to this manifold context, using Riemannian geometry tools. A real case study illustrates the methodology. This example demonstrates how the clustering methodology proposed honors the spatial configuration of data delivering spatially connected clusters even when complex nonlinear relationships in the attribute space are shown.</description><identifier>ISSN: 1874-8961</identifier><identifier>EISSN: 1874-8953</identifier><identifier>DOI: 10.1007/s11004-023-10085-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Chemistry and Earth Sciences ; Clustering ; Complex variables ; Computer Science ; Continuity (mathematics) ; Correlation ; Correlation analysis ; Earth and Environmental Science ; Earth Sciences ; Geology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrogeology ; Logging ; Manifolds ; Manifolds (mathematics) ; Methods ; Modelling ; Multivariate analysis ; Natural phenomena ; Physics ; Spatial data ; Special Issue ; Statistics for Engineering</subject><ispartof>Mathematical geosciences, 2024, Vol.56 (1), p.121-141</ispartof><rights>International Association for Mathematical Geosciences 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-1261841ce0bd3f61a38aa503f76cab29000fb3375422660c06b19ec5aa8d1b4e3</cites><orcidid>0000-0001-5187-9244 ; 0000-0003-1332-8809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11004-023-10085-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11004-023-10085-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Riquelme, Álvaro I.</creatorcontrib><creatorcontrib>Ortiz, Julian M.</creatorcontrib><title>A Riemannian Tool for Clustering of Geo-Spatial Multivariate Data</title><title>Mathematical geosciences</title><addtitle>Math Geosci</addtitle><description>Geological modeling is essential for the characterization of natural phenomena and can be done in two steps: (1) clustering the data into consistent groups and (2) modeling the extent of these groups in space to define domains, honoring the labels defined in the previous step. The clustering step can be based on the information of continuous multivariate data in space instead of relying on the geological logging provided. However, extracting coherent spatial multivariate information is challenging when the variables show complex relationships, such as nonlinear correlation, heteroscedastic behavior, or spatial trends. In this work, we propose a method for clustering data, valid for domaining when multiple continuous variables are available and robust enough to deal with cases where complex relationships are found. The method looks at the local correlation matrix between variables at sample locations inferred in a local neighborhood. Changes in the local correlation between these attributes in space can be used to characterize the domains. By endowing the space of correlation matrices with a manifold structure, matrices are then clustered by adapting the K -means algorithm to this manifold context, using Riemannian geometry tools. A real case study illustrates the methodology. This example demonstrates how the clustering methodology proposed honors the spatial configuration of data delivering spatially connected clusters even when complex nonlinear relationships in the attribute space are shown.</description><subject>Algorithms</subject><subject>Chemistry and Earth Sciences</subject><subject>Clustering</subject><subject>Complex variables</subject><subject>Computer Science</subject><subject>Continuity (mathematics)</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Logging</subject><subject>Manifolds</subject><subject>Manifolds (mathematics)</subject><subject>Methods</subject><subject>Modelling</subject><subject>Multivariate analysis</subject><subject>Natural phenomena</subject><subject>Physics</subject><subject>Spatial data</subject><subject>Special Issue</subject><subject>Statistics for Engineering</subject><issn>1874-8961</issn><issn>1874-8953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAUhIMouK7-AU8Bz9GXpE3b47LqKqwIup7DazeRLt2mJqngvzda0ZunN4eZecxHyDmHSw5QXAWeTsZASJZEmbPigMx4WWSsrHJ5-KsVPyYnIewAFJc5n5HFgj61Zo9932JPN8511DpPl90YovFt_0qdpSvj2POAscWOPoxdbN_RtxgNvcaIp-TIYhfM2c-dk5fbm83yjq0fV_fLxZqhqGRkXCheZrwxUG-lVRxliZiDtIVqsBYVANhayiLPhFAKGlA1r0yTI5ZbXmdGzsnF1Dt49zaaEPXOjb5PL7Wo0ry8hEoml5hcjXcheGP14Ns9-g_NQX-h0hMqnVDpb1S6SCE5hcLwNdn4v-p_Up8d3Woh</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Riquelme, Álvaro I.</creator><creator>Ortiz, Julian M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5187-9244</orcidid><orcidid>https://orcid.org/0000-0003-1332-8809</orcidid></search><sort><creationdate>2024</creationdate><title>A Riemannian Tool for Clustering of Geo-Spatial Multivariate Data</title><author>Riquelme, Álvaro I. ; Ortiz, Julian M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-1261841ce0bd3f61a38aa503f76cab29000fb3375422660c06b19ec5aa8d1b4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Chemistry and Earth Sciences</topic><topic>Clustering</topic><topic>Complex variables</topic><topic>Computer Science</topic><topic>Continuity (mathematics)</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Logging</topic><topic>Manifolds</topic><topic>Manifolds (mathematics)</topic><topic>Methods</topic><topic>Modelling</topic><topic>Multivariate analysis</topic><topic>Natural phenomena</topic><topic>Physics</topic><topic>Spatial data</topic><topic>Special Issue</topic><topic>Statistics for Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riquelme, Álvaro I.</creatorcontrib><creatorcontrib>Ortiz, Julian M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical geosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riquelme, Álvaro I.</au><au>Ortiz, Julian M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Riemannian Tool for Clustering of Geo-Spatial Multivariate Data</atitle><jtitle>Mathematical geosciences</jtitle><stitle>Math Geosci</stitle><date>2024</date><risdate>2024</risdate><volume>56</volume><issue>1</issue><spage>121</spage><epage>141</epage><pages>121-141</pages><issn>1874-8961</issn><eissn>1874-8953</eissn><abstract>Geological modeling is essential for the characterization of natural phenomena and can be done in two steps: (1) clustering the data into consistent groups and (2) modeling the extent of these groups in space to define domains, honoring the labels defined in the previous step. The clustering step can be based on the information of continuous multivariate data in space instead of relying on the geological logging provided. However, extracting coherent spatial multivariate information is challenging when the variables show complex relationships, such as nonlinear correlation, heteroscedastic behavior, or spatial trends. In this work, we propose a method for clustering data, valid for domaining when multiple continuous variables are available and robust enough to deal with cases where complex relationships are found. The method looks at the local correlation matrix between variables at sample locations inferred in a local neighborhood. Changes in the local correlation between these attributes in space can be used to characterize the domains. By endowing the space of correlation matrices with a manifold structure, matrices are then clustered by adapting the K -means algorithm to this manifold context, using Riemannian geometry tools. A real case study illustrates the methodology. This example demonstrates how the clustering methodology proposed honors the spatial configuration of data delivering spatially connected clusters even when complex nonlinear relationships in the attribute space are shown.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11004-023-10085-7</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5187-9244</orcidid><orcidid>https://orcid.org/0000-0003-1332-8809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1874-8961
ispartof Mathematical geosciences, 2024, Vol.56 (1), p.121-141
issn 1874-8961
1874-8953
language eng
recordid cdi_proquest_journals_2918758093
source SpringerLink Journals
subjects Algorithms
Chemistry and Earth Sciences
Clustering
Complex variables
Computer Science
Continuity (mathematics)
Correlation
Correlation analysis
Earth and Environmental Science
Earth Sciences
Geology
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Logging
Manifolds
Manifolds (mathematics)
Methods
Modelling
Multivariate analysis
Natural phenomena
Physics
Spatial data
Special Issue
Statistics for Engineering
title A Riemannian Tool for Clustering of Geo-Spatial Multivariate Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A10%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Riemannian%20Tool%20for%20Clustering%20of%20Geo-Spatial%20Multivariate%20Data&rft.jtitle=Mathematical%20geosciences&rft.au=Riquelme,%20%C3%81lvaro%20I.&rft.date=2024&rft.volume=56&rft.issue=1&rft.spage=121&rft.epage=141&rft.pages=121-141&rft.issn=1874-8961&rft.eissn=1874-8953&rft_id=info:doi/10.1007/s11004-023-10085-7&rft_dat=%3Cproquest_cross%3E2918758093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918758093&rft_id=info:pmid/&rfr_iscdi=true