Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks
The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technologica...
Gespeichert in:
Veröffentlicht in: | Journal of experimental and theoretical physics 2023-12, Vol.137 (6), p.888-898 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 898 |
---|---|
container_issue | 6 |
container_start_page | 888 |
container_title | Journal of experimental and theoretical physics |
container_volume | 137 |
creator | Ionin, A. S. Shuravin, N. S. Karelina, L. N. Rossolenko, A. N. Sidel’nikov, M. S. Egorov, S. V. Chichkov, V. I. Chichkov, M. V. Zhdanova, M. V. Shchegolev, A. E. Bol’ginov, V. V. |
description | The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered. |
doi_str_mv | 10.1134/S1063776123120191 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918758086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780587660</galeid><sourcerecordid>A780587660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</originalsourceid><addsrcrecordid>eNp1kVtLwzAUgIsoeP0BvhV88qEzJ1nT5HGMeYExxepzSdPTUt2amaS4_XszK8gQyUNyTr7v5HKi6BLICICNb3IgnGUZB8qAEpBwEJ0AkSThKZGHuzVnyW7_ODp17o0QIiiRJ5GabdZo2xV2Xi3j3PfVNjZ1rOIna7zx2zUOYd4HTJuu6rVvuybO22al4gX21nRxbWw8qVpVKt_q72SotUD_aey7O4-OarV0ePEzn0Wvt7OX6X0yf7x7mE7miWZC-oSWNBUI5RjGEpgqsxSFzBRlXCqgvC51ybRQPJOas0rotFYAJQCXnBDElJ1FV0PdtTUfPTpfvJneduHIgkoQWSqI4IEaDVSjlli0XW28VTqMCldteB_WbchPMkFSkXFOgnC9JwTG48Y3qneueMif91kYWG2NcxbrYh2-VtltAaTYtan406bg0MFxge0atL_X_l_6Ao3mkl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918758086</pqid></control><display><type>article</type><title>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</title><source>SpringerLink Journals</source><creator>Ionin, A. S. ; Shuravin, N. S. ; Karelina, L. N. ; Rossolenko, A. N. ; Sidel’nikov, M. S. ; Egorov, S. V. ; Chichkov, V. I. ; Chichkov, M. V. ; Zhdanova, M. V. ; Shchegolev, A. E. ; Bol’ginov, V. V.</creator><creatorcontrib>Ionin, A. S. ; Shuravin, N. S. ; Karelina, L. N. ; Rossolenko, A. N. ; Sidel’nikov, M. S. ; Egorov, S. V. ; Chichkov, V. I. ; Chichkov, M. V. ; Zhdanova, M. V. ; Shchegolev, A. E. ; Bol’ginov, V. V.</creatorcontrib><description>The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776123120191</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Circuit design ; Classical and Quantum Gravitation ; Dielectric films ; Disorder ; Elementary Particles ; Inductance ; Multilayers ; Neural networks ; Neurons ; Neurophysiology ; Order ; Particle and Nuclear Physics ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Solid State Physics ; Superconductivity ; Superconductors ; Thin films ; Transfer functions</subject><ispartof>Journal of experimental and theoretical physics, 2023-12, Vol.137 (6), p.888-898</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2023, Vol. 137, No. 6, pp. 888–898. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 164, No. 6, pp. 1008–1021.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</citedby><cites>FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776123120191$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776123120191$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ionin, A. S.</creatorcontrib><creatorcontrib>Shuravin, N. S.</creatorcontrib><creatorcontrib>Karelina, L. N.</creatorcontrib><creatorcontrib>Rossolenko, A. N.</creatorcontrib><creatorcontrib>Sidel’nikov, M. S.</creatorcontrib><creatorcontrib>Egorov, S. V.</creatorcontrib><creatorcontrib>Chichkov, V. I.</creatorcontrib><creatorcontrib>Chichkov, M. V.</creatorcontrib><creatorcontrib>Zhdanova, M. V.</creatorcontrib><creatorcontrib>Shchegolev, A. E.</creatorcontrib><creatorcontrib>Bol’ginov, V. V.</creatorcontrib><title>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.</description><subject>Circuit design</subject><subject>Classical and Quantum Gravitation</subject><subject>Dielectric films</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>Inductance</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Solid State Physics</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Thin films</subject><subject>Transfer functions</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLwzAUgIsoeP0BvhV88qEzJ1nT5HGMeYExxepzSdPTUt2amaS4_XszK8gQyUNyTr7v5HKi6BLICICNb3IgnGUZB8qAEpBwEJ0AkSThKZGHuzVnyW7_ODp17o0QIiiRJ5GabdZo2xV2Xi3j3PfVNjZ1rOIna7zx2zUOYd4HTJuu6rVvuybO22al4gX21nRxbWw8qVpVKt_q72SotUD_aey7O4-OarV0ePEzn0Wvt7OX6X0yf7x7mE7miWZC-oSWNBUI5RjGEpgqsxSFzBRlXCqgvC51ybRQPJOas0rotFYAJQCXnBDElJ1FV0PdtTUfPTpfvJneduHIgkoQWSqI4IEaDVSjlli0XW28VTqMCldteB_WbchPMkFSkXFOgnC9JwTG48Y3qneueMif91kYWG2NcxbrYh2-VtltAaTYtan406bg0MFxge0atL_X_l_6Ao3mkl4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ionin, A. S.</creator><creator>Shuravin, N. S.</creator><creator>Karelina, L. N.</creator><creator>Rossolenko, A. N.</creator><creator>Sidel’nikov, M. S.</creator><creator>Egorov, S. V.</creator><creator>Chichkov, V. I.</creator><creator>Chichkov, M. V.</creator><creator>Zhdanova, M. V.</creator><creator>Shchegolev, A. E.</creator><creator>Bol’ginov, V. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231201</creationdate><title>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</title><author>Ionin, A. S. ; Shuravin, N. S. ; Karelina, L. N. ; Rossolenko, A. N. ; Sidel’nikov, M. S. ; Egorov, S. V. ; Chichkov, V. I. ; Chichkov, M. V. ; Zhdanova, M. V. ; Shchegolev, A. E. ; Bol’ginov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Classical and Quantum Gravitation</topic><topic>Dielectric films</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>Inductance</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Solid State Physics</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Thin films</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionin, A. S.</creatorcontrib><creatorcontrib>Shuravin, N. S.</creatorcontrib><creatorcontrib>Karelina, L. N.</creatorcontrib><creatorcontrib>Rossolenko, A. N.</creatorcontrib><creatorcontrib>Sidel’nikov, M. S.</creatorcontrib><creatorcontrib>Egorov, S. V.</creatorcontrib><creatorcontrib>Chichkov, V. I.</creatorcontrib><creatorcontrib>Chichkov, M. V.</creatorcontrib><creatorcontrib>Zhdanova, M. V.</creatorcontrib><creatorcontrib>Shchegolev, A. E.</creatorcontrib><creatorcontrib>Bol’ginov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionin, A. S.</au><au>Shuravin, N. S.</au><au>Karelina, L. N.</au><au>Rossolenko, A. N.</au><au>Sidel’nikov, M. S.</au><au>Egorov, S. V.</au><au>Chichkov, V. I.</au><au>Chichkov, M. V.</au><au>Zhdanova, M. V.</au><au>Shchegolev, A. E.</au><au>Bol’ginov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>137</volume><issue>6</issue><spage>888</spage><epage>898</epage><pages>888-898</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776123120191</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7761 |
ispartof | Journal of experimental and theoretical physics, 2023-12, Vol.137 (6), p.888-898 |
issn | 1063-7761 1090-6509 |
language | eng |
recordid | cdi_proquest_journals_2918758086 |
source | SpringerLink Journals |
subjects | Circuit design Classical and Quantum Gravitation Dielectric films Disorder Elementary Particles Inductance Multilayers Neural networks Neurons Neurophysiology Order Particle and Nuclear Physics Phase Transition in Condensed System Physics Physics and Astronomy Quantum Field Theory Relativity Theory Solid State Physics Superconductivity Superconductors Thin films Transfer functions |
title | Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Study%20of%20a%20Prototype%20of%20a%20Superconducting%20Sigma%20Neuron%20for%20Adiabatic%20Neural%20Networks&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Ionin,%20A.%20S.&rft.date=2023-12-01&rft.volume=137&rft.issue=6&rft.spage=888&rft.epage=898&rft.pages=888-898&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776123120191&rft_dat=%3Cgale_proqu%3EA780587660%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918758086&rft_id=info:pmid/&rft_galeid=A780587660&rfr_iscdi=true |