Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks

The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental and theoretical physics 2023-12, Vol.137 (6), p.888-898
Hauptverfasser: Ionin, A. S., Shuravin, N. S., Karelina, L. N., Rossolenko, A. N., Sidel’nikov, M. S., Egorov, S. V., Chichkov, V. I., Chichkov, M. V., Zhdanova, M. V., Shchegolev, A. E., Bol’ginov, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 898
container_issue 6
container_start_page 888
container_title Journal of experimental and theoretical physics
container_volume 137
creator Ionin, A. S.
Shuravin, N. S.
Karelina, L. N.
Rossolenko, A. N.
Sidel’nikov, M. S.
Egorov, S. V.
Chichkov, V. I.
Chichkov, M. V.
Zhdanova, M. V.
Shchegolev, A. E.
Bol’ginov, V. V.
description The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.
doi_str_mv 10.1134/S1063776123120191
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918758086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780587660</galeid><sourcerecordid>A780587660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</originalsourceid><addsrcrecordid>eNp1kVtLwzAUgIsoeP0BvhV88qEzJ1nT5HGMeYExxepzSdPTUt2amaS4_XszK8gQyUNyTr7v5HKi6BLICICNb3IgnGUZB8qAEpBwEJ0AkSThKZGHuzVnyW7_ODp17o0QIiiRJ5GabdZo2xV2Xi3j3PfVNjZ1rOIna7zx2zUOYd4HTJuu6rVvuybO22al4gX21nRxbWw8qVpVKt_q72SotUD_aey7O4-OarV0ePEzn0Wvt7OX6X0yf7x7mE7miWZC-oSWNBUI5RjGEpgqsxSFzBRlXCqgvC51ybRQPJOas0rotFYAJQCXnBDElJ1FV0PdtTUfPTpfvJneduHIgkoQWSqI4IEaDVSjlli0XW28VTqMCldteB_WbchPMkFSkXFOgnC9JwTG48Y3qneueMif91kYWG2NcxbrYh2-VtltAaTYtan406bg0MFxge0atL_X_l_6Ao3mkl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918758086</pqid></control><display><type>article</type><title>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</title><source>SpringerLink Journals</source><creator>Ionin, A. S. ; Shuravin, N. S. ; Karelina, L. N. ; Rossolenko, A. N. ; Sidel’nikov, M. S. ; Egorov, S. V. ; Chichkov, V. I. ; Chichkov, M. V. ; Zhdanova, M. V. ; Shchegolev, A. E. ; Bol’ginov, V. V.</creator><creatorcontrib>Ionin, A. S. ; Shuravin, N. S. ; Karelina, L. N. ; Rossolenko, A. N. ; Sidel’nikov, M. S. ; Egorov, S. V. ; Chichkov, V. I. ; Chichkov, M. V. ; Zhdanova, M. V. ; Shchegolev, A. E. ; Bol’ginov, V. V.</creatorcontrib><description>The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.</description><identifier>ISSN: 1063-7761</identifier><identifier>EISSN: 1090-6509</identifier><identifier>DOI: 10.1134/S1063776123120191</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Circuit design ; Classical and Quantum Gravitation ; Dielectric films ; Disorder ; Elementary Particles ; Inductance ; Multilayers ; Neural networks ; Neurons ; Neurophysiology ; Order ; Particle and Nuclear Physics ; Phase Transition in Condensed System ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Relativity Theory ; Solid State Physics ; Superconductivity ; Superconductors ; Thin films ; Transfer functions</subject><ispartof>Journal of experimental and theoretical physics, 2023-12, Vol.137 (6), p.888-898</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7761, Journal of Experimental and Theoretical Physics, 2023, Vol. 137, No. 6, pp. 888–898. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2023, Vol. 164, No. 6, pp. 1008–1021.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</citedby><cites>FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063776123120191$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063776123120191$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ionin, A. S.</creatorcontrib><creatorcontrib>Shuravin, N. S.</creatorcontrib><creatorcontrib>Karelina, L. N.</creatorcontrib><creatorcontrib>Rossolenko, A. N.</creatorcontrib><creatorcontrib>Sidel’nikov, M. S.</creatorcontrib><creatorcontrib>Egorov, S. V.</creatorcontrib><creatorcontrib>Chichkov, V. I.</creatorcontrib><creatorcontrib>Chichkov, M. V.</creatorcontrib><creatorcontrib>Zhdanova, M. V.</creatorcontrib><creatorcontrib>Shchegolev, A. E.</creatorcontrib><creatorcontrib>Bol’ginov, V. V.</creatorcontrib><title>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</title><title>Journal of experimental and theoretical physics</title><addtitle>J. Exp. Theor. Phys</addtitle><description>The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.</description><subject>Circuit design</subject><subject>Classical and Quantum Gravitation</subject><subject>Dielectric films</subject><subject>Disorder</subject><subject>Elementary Particles</subject><subject>Inductance</subject><subject>Multilayers</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Order</subject><subject>Particle and Nuclear Physics</subject><subject>Phase Transition in Condensed System</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Relativity Theory</subject><subject>Solid State Physics</subject><subject>Superconductivity</subject><subject>Superconductors</subject><subject>Thin films</subject><subject>Transfer functions</subject><issn>1063-7761</issn><issn>1090-6509</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLwzAUgIsoeP0BvhV88qEzJ1nT5HGMeYExxepzSdPTUt2amaS4_XszK8gQyUNyTr7v5HKi6BLICICNb3IgnGUZB8qAEpBwEJ0AkSThKZGHuzVnyW7_ODp17o0QIiiRJ5GabdZo2xV2Xi3j3PfVNjZ1rOIna7zx2zUOYd4HTJuu6rVvuybO22al4gX21nRxbWw8qVpVKt_q72SotUD_aey7O4-OarV0ePEzn0Wvt7OX6X0yf7x7mE7miWZC-oSWNBUI5RjGEpgqsxSFzBRlXCqgvC51ybRQPJOas0rotFYAJQCXnBDElJ1FV0PdtTUfPTpfvJneduHIgkoQWSqI4IEaDVSjlli0XW28VTqMCldteB_WbchPMkFSkXFOgnC9JwTG48Y3qneueMif91kYWG2NcxbrYh2-VtltAaTYtan406bg0MFxge0atL_X_l_6Ao3mkl4</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ionin, A. S.</creator><creator>Shuravin, N. S.</creator><creator>Karelina, L. N.</creator><creator>Rossolenko, A. N.</creator><creator>Sidel’nikov, M. S.</creator><creator>Egorov, S. V.</creator><creator>Chichkov, V. I.</creator><creator>Chichkov, M. V.</creator><creator>Zhdanova, M. V.</creator><creator>Shchegolev, A. E.</creator><creator>Bol’ginov, V. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231201</creationdate><title>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</title><author>Ionin, A. S. ; Shuravin, N. S. ; Karelina, L. N. ; Rossolenko, A. N. ; Sidel’nikov, M. S. ; Egorov, S. V. ; Chichkov, V. I. ; Chichkov, M. V. ; Zhdanova, M. V. ; Shchegolev, A. E. ; Bol’ginov, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2b258e1b414913ab75e897a2369a126fbcb3c8a679c63d8c5fa11b1169600ee53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Circuit design</topic><topic>Classical and Quantum Gravitation</topic><topic>Dielectric films</topic><topic>Disorder</topic><topic>Elementary Particles</topic><topic>Inductance</topic><topic>Multilayers</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Order</topic><topic>Particle and Nuclear Physics</topic><topic>Phase Transition in Condensed System</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Relativity Theory</topic><topic>Solid State Physics</topic><topic>Superconductivity</topic><topic>Superconductors</topic><topic>Thin films</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionin, A. S.</creatorcontrib><creatorcontrib>Shuravin, N. S.</creatorcontrib><creatorcontrib>Karelina, L. N.</creatorcontrib><creatorcontrib>Rossolenko, A. N.</creatorcontrib><creatorcontrib>Sidel’nikov, M. S.</creatorcontrib><creatorcontrib>Egorov, S. V.</creatorcontrib><creatorcontrib>Chichkov, V. I.</creatorcontrib><creatorcontrib>Chichkov, M. V.</creatorcontrib><creatorcontrib>Zhdanova, M. V.</creatorcontrib><creatorcontrib>Shchegolev, A. E.</creatorcontrib><creatorcontrib>Bol’ginov, V. V.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of experimental and theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionin, A. S.</au><au>Shuravin, N. S.</au><au>Karelina, L. N.</au><au>Rossolenko, A. N.</au><au>Sidel’nikov, M. S.</au><au>Egorov, S. V.</au><au>Chichkov, V. I.</au><au>Chichkov, M. V.</au><au>Zhdanova, M. V.</au><au>Shchegolev, A. E.</au><au>Bol’ginov, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks</atitle><jtitle>Journal of experimental and theoretical physics</jtitle><stitle>J. Exp. Theor. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>137</volume><issue>6</issue><spage>888</spage><epage>898</epage><pages>888-898</pages><issn>1063-7761</issn><eissn>1090-6509</eissn><abstract>The artificial neuron proposed earlier for use in superconducting neural networks is experimentally studied. The fabricated sample is a single-junction interferometer, part of the circuit of which is shunted by an additional inductance, which is also used to generate an output signal. A technological process has been developed and tested to fabricate a neuron in the form of a multilayer thin-film structure over a thick superconducting screen. The transfer function of the fabricated sample, which contains sigmoid and linear components, is experimentally measured. A theoretical model is developed to describe the relation between input and output signals in a practical superconducting neuron. The derived equations are shown to approximate experimental curves at a high level of accuracy. The linear component of the transfer function is shown to be related to the direct transmission of an input signal to a measuring circuit. Possible ways for improving the design of the sigma neuron are considered.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063776123120191</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7761
ispartof Journal of experimental and theoretical physics, 2023-12, Vol.137 (6), p.888-898
issn 1063-7761
1090-6509
language eng
recordid cdi_proquest_journals_2918758086
source SpringerLink Journals
subjects Circuit design
Classical and Quantum Gravitation
Dielectric films
Disorder
Elementary Particles
Inductance
Multilayers
Neural networks
Neurons
Neurophysiology
Order
Particle and Nuclear Physics
Phase Transition in Condensed System
Physics
Physics and Astronomy
Quantum Field Theory
Relativity Theory
Solid State Physics
Superconductivity
Superconductors
Thin films
Transfer functions
title Experimental Study of a Prototype of a Superconducting Sigma Neuron for Adiabatic Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Study%20of%20a%20Prototype%20of%20a%20Superconducting%20Sigma%20Neuron%20for%20Adiabatic%20Neural%20Networks&rft.jtitle=Journal%20of%20experimental%20and%20theoretical%20physics&rft.au=Ionin,%20A.%20S.&rft.date=2023-12-01&rft.volume=137&rft.issue=6&rft.spage=888&rft.epage=898&rft.pages=888-898&rft.issn=1063-7761&rft.eissn=1090-6509&rft_id=info:doi/10.1134/S1063776123120191&rft_dat=%3Cgale_proqu%3EA780587660%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918758086&rft_id=info:pmid/&rft_galeid=A780587660&rfr_iscdi=true