Application of k-means clustering to environmental risk zoning of the chemical industrial area

The homogeneous risk characteristics within a sub-area and the heterogeneous from one sub-area to another are unclear using existing environmental risk zoning methods. This study presents a new zoning method by determining and categorizing the risk characteristics using the k-means clustering data m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of environmental science & engineering 2014-02, Vol.8 (1), p.117-127
Hauptverfasser: Shi, Weifang, Zeng, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 117
container_title Frontiers of environmental science & engineering
container_volume 8
creator Shi, Weifang
Zeng, Weihua
description The homogeneous risk characteristics within a sub-area and the heterogeneous from one sub-area to another are unclear using existing environmental risk zoning methods. This study presents a new zoning method by determining and categorizing the risk characteristics using the k-means clustering data mining technology. The study constructs indices and develops index quantification models for environmental risk zoning by analyzing the mechanism of environmental risk occurrence. We calculate the source risk index, air risk field index, water risk field index, and target vulnerability of the study area with Nanjing Chemical Industrial Park using a 100 m - 100 m mesh grid as the basic zoning unit, and then use k-means clustering to analyze the environmental risk in the area. We obtain the optimal clustering number with the largest average silhouette coefficient by calculating the average silhouette coefficients of clustering at different k-values. The clustering result with the optimal clustering number is then used for the environmental risk zoning, and the zoning result is mapped using the geographic information system. The study area is divided into five sub-areas. The common environmental risk characteristics within the same sub-area, as well as the differences between sub- areas, are presented. The zoning is helpful in risk management and is convenient for decision makers to distribute limited resources to different sub-areas in the design of risk reducing intervention.
doi_str_mv 10.1007/s11783-013-0581-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918742785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49082270</cqvip_id><sourcerecordid>1512332546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-bcc6bb31173a2b2fb62ecbb175fc711489c1d08a6412314c4b032e7e1a1accfa3</originalsourceid><addsrcrecordid>eNp9kc1q3TAQhU1poSHNA3RVlW66caqRZEt3GUJ_AoEu2kBXFbLu-FqJLTmSb6F9-o5xSKGLCIQGdL7DzJmqeg38HDjXHwqANrLmQLcxUDfPqhPBd00tBPx4_lhzeFmdlXLL6RijwMiT6ufFPI_BuyWkyFLP7uoJXSzMj8eyYA7xwJbEMP4KOcUJ4-JGlkO5Y39SXD8JWQZkfsCJXEYW4p7AHKh0Gd2r6kXvxoJnD-9pdfPp4_fLL_X1189XlxfXtVfKLHXnfdt1ksaQTnSi71qBvutAN73XAMrsPOy5ca0CIUF51XEpUCM4cN73Tp5W7zffOaf7I5bFTqF4HEcXMR2LhYZAKRrVkvTdf9LbdMyRurNiB0YroU1DKthUPqdSMvZ2zmFy-bcFbtfQ7Ra6pdDtGrpdGbExZV6Dw_zP-SnIbNAQDgNm3M8ZS7E9xb0EzE-jbza0d8m6A63F3nyjLSvOoVVaS1K8fZhiSPFwT009jqF23AihufwL7RerMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918742785</pqid></control><display><type>article</type><title>Application of k-means clustering to environmental risk zoning of the chemical industrial area</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Shi, Weifang ; Zeng, Weihua</creator><creatorcontrib>Shi, Weifang ; Zeng, Weihua</creatorcontrib><description>The homogeneous risk characteristics within a sub-area and the heterogeneous from one sub-area to another are unclear using existing environmental risk zoning methods. This study presents a new zoning method by determining and categorizing the risk characteristics using the k-means clustering data mining technology. The study constructs indices and develops index quantification models for environmental risk zoning by analyzing the mechanism of environmental risk occurrence. We calculate the source risk index, air risk field index, water risk field index, and target vulnerability of the study area with Nanjing Chemical Industrial Park using a 100 m - 100 m mesh grid as the basic zoning unit, and then use k-means clustering to analyze the environmental risk in the area. We obtain the optimal clustering number with the largest average silhouette coefficient by calculating the average silhouette coefficients of clustering at different k-values. The clustering result with the optimal clustering number is then used for the environmental risk zoning, and the zoning result is mapped using the geographic information system. The study area is divided into five sub-areas. The common environmental risk characteristics within the same sub-area, as well as the differences between sub- areas, are presented. The zoning is helpful in risk management and is convenient for decision makers to distribute limited resources to different sub-areas in the design of risk reducing intervention.</description><identifier>ISSN: 2095-2201</identifier><identifier>ISSN: 1673-7415</identifier><identifier>EISSN: 2095-221X</identifier><identifier>EISSN: 1673-7520</identifier><identifier>DOI: 10.1007/s11783-013-0581-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>air ; chemical industrial park ; Cluster analysis ; Clustering ; Data mining ; Earth and Environmental Science ; Environment ; Environment models ; environmental models ; Environmental risk ; environmental risk zoning ; Finite element method ; Geographic information systems ; Industrial areas ; Industrial parks ; k-means clustering ; k-means聚类 ; Remote sensing ; Research Article ; risk ; Risk analysis ; Risk management ; silhouette coefficient ; Vector quantization ; Zoning ; 化学工业区 ; 南京化学工业园区 ; 应用 ; 数据挖掘技术 ; 最佳聚类数 ; 环境风险 ; 风险区划</subject><ispartof>Frontiers of environmental science &amp; engineering, 2014-02, Vol.8 (1), p.117-127</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-bcc6bb31173a2b2fb62ecbb175fc711489c1d08a6412314c4b032e7e1a1accfa3</citedby><cites>FETCH-LOGICAL-c448t-bcc6bb31173a2b2fb62ecbb175fc711489c1d08a6412314c4b032e7e1a1accfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71245X/71245X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11783-013-0581-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918742785?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21392,27928,27929,33748,41492,42561,43809,51323,64389,64393,72473</link.rule.ids></links><search><creatorcontrib>Shi, Weifang</creatorcontrib><creatorcontrib>Zeng, Weihua</creatorcontrib><title>Application of k-means clustering to environmental risk zoning of the chemical industrial area</title><title>Frontiers of environmental science &amp; engineering</title><addtitle>Front Envir Sci Eng</addtitle><addtitle>Front. Environ. Sci. Eng</addtitle><addtitle>Frontiers of Environmental Science & Engineering in China</addtitle><description>The homogeneous risk characteristics within a sub-area and the heterogeneous from one sub-area to another are unclear using existing environmental risk zoning methods. This study presents a new zoning method by determining and categorizing the risk characteristics using the k-means clustering data mining technology. The study constructs indices and develops index quantification models for environmental risk zoning by analyzing the mechanism of environmental risk occurrence. We calculate the source risk index, air risk field index, water risk field index, and target vulnerability of the study area with Nanjing Chemical Industrial Park using a 100 m - 100 m mesh grid as the basic zoning unit, and then use k-means clustering to analyze the environmental risk in the area. We obtain the optimal clustering number with the largest average silhouette coefficient by calculating the average silhouette coefficients of clustering at different k-values. The clustering result with the optimal clustering number is then used for the environmental risk zoning, and the zoning result is mapped using the geographic information system. The study area is divided into five sub-areas. The common environmental risk characteristics within the same sub-area, as well as the differences between sub- areas, are presented. The zoning is helpful in risk management and is convenient for decision makers to distribute limited resources to different sub-areas in the design of risk reducing intervention.</description><subject>air</subject><subject>chemical industrial park</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Earth and Environmental Science</subject><subject>Environment</subject><subject>Environment models</subject><subject>environmental models</subject><subject>Environmental risk</subject><subject>environmental risk zoning</subject><subject>Finite element method</subject><subject>Geographic information systems</subject><subject>Industrial areas</subject><subject>Industrial parks</subject><subject>k-means clustering</subject><subject>k-means聚类</subject><subject>Remote sensing</subject><subject>Research Article</subject><subject>risk</subject><subject>Risk analysis</subject><subject>Risk management</subject><subject>silhouette coefficient</subject><subject>Vector quantization</subject><subject>Zoning</subject><subject>化学工业区</subject><subject>南京化学工业园区</subject><subject>应用</subject><subject>数据挖掘技术</subject><subject>最佳聚类数</subject><subject>环境风险</subject><subject>风险区划</subject><issn>2095-2201</issn><issn>1673-7415</issn><issn>2095-221X</issn><issn>1673-7520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1q3TAQhU1poSHNA3RVlW66caqRZEt3GUJ_AoEu2kBXFbLu-FqJLTmSb6F9-o5xSKGLCIQGdL7DzJmqeg38HDjXHwqANrLmQLcxUDfPqhPBd00tBPx4_lhzeFmdlXLL6RijwMiT6ufFPI_BuyWkyFLP7uoJXSzMj8eyYA7xwJbEMP4KOcUJ4-JGlkO5Y39SXD8JWQZkfsCJXEYW4p7AHKh0Gd2r6kXvxoJnD-9pdfPp4_fLL_X1189XlxfXtVfKLHXnfdt1ksaQTnSi71qBvutAN73XAMrsPOy5ca0CIUF51XEpUCM4cN73Tp5W7zffOaf7I5bFTqF4HEcXMR2LhYZAKRrVkvTdf9LbdMyRurNiB0YroU1DKthUPqdSMvZ2zmFy-bcFbtfQ7Ra6pdDtGrpdGbExZV6Dw_zP-SnIbNAQDgNm3M8ZS7E9xb0EzE-jbza0d8m6A63F3nyjLSvOoVVaS1K8fZhiSPFwT009jqF23AihufwL7RerMQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Shi, Weifang</creator><creator>Zeng, Weihua</creator><general>Springer-Verlag</general><general>Higher Education Press</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>7QH</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20140201</creationdate><title>Application of k-means clustering to environmental risk zoning of the chemical industrial area</title><author>Shi, Weifang ; Zeng, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-bcc6bb31173a2b2fb62ecbb175fc711489c1d08a6412314c4b032e7e1a1accfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>air</topic><topic>chemical industrial park</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Earth and Environmental Science</topic><topic>Environment</topic><topic>Environment models</topic><topic>environmental models</topic><topic>Environmental risk</topic><topic>environmental risk zoning</topic><topic>Finite element method</topic><topic>Geographic information systems</topic><topic>Industrial areas</topic><topic>Industrial parks</topic><topic>k-means clustering</topic><topic>k-means聚类</topic><topic>Remote sensing</topic><topic>Research Article</topic><topic>risk</topic><topic>Risk analysis</topic><topic>Risk management</topic><topic>silhouette coefficient</topic><topic>Vector quantization</topic><topic>Zoning</topic><topic>化学工业区</topic><topic>南京化学工业园区</topic><topic>应用</topic><topic>数据挖掘技术</topic><topic>最佳聚类数</topic><topic>环境风险</topic><topic>风险区划</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Weifang</creatorcontrib><creatorcontrib>Zeng, Weihua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Frontiers of environmental science &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Weifang</au><au>Zeng, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of k-means clustering to environmental risk zoning of the chemical industrial area</atitle><jtitle>Frontiers of environmental science &amp; engineering</jtitle><stitle>Front Envir Sci Eng</stitle><stitle>Front. Environ. Sci. Eng</stitle><addtitle>Frontiers of Environmental Science & Engineering in China</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>8</volume><issue>1</issue><spage>117</spage><epage>127</epage><pages>117-127</pages><issn>2095-2201</issn><issn>1673-7415</issn><eissn>2095-221X</eissn><eissn>1673-7520</eissn><abstract>The homogeneous risk characteristics within a sub-area and the heterogeneous from one sub-area to another are unclear using existing environmental risk zoning methods. This study presents a new zoning method by determining and categorizing the risk characteristics using the k-means clustering data mining technology. The study constructs indices and develops index quantification models for environmental risk zoning by analyzing the mechanism of environmental risk occurrence. We calculate the source risk index, air risk field index, water risk field index, and target vulnerability of the study area with Nanjing Chemical Industrial Park using a 100 m - 100 m mesh grid as the basic zoning unit, and then use k-means clustering to analyze the environmental risk in the area. We obtain the optimal clustering number with the largest average silhouette coefficient by calculating the average silhouette coefficients of clustering at different k-values. The clustering result with the optimal clustering number is then used for the environmental risk zoning, and the zoning result is mapped using the geographic information system. The study area is divided into five sub-areas. The common environmental risk characteristics within the same sub-area, as well as the differences between sub- areas, are presented. The zoning is helpful in risk management and is convenient for decision makers to distribute limited resources to different sub-areas in the design of risk reducing intervention.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11783-013-0581-5</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2095-2201
ispartof Frontiers of environmental science & engineering, 2014-02, Vol.8 (1), p.117-127
issn 2095-2201
1673-7415
2095-221X
1673-7520
language eng
recordid cdi_proquest_journals_2918742785
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects air
chemical industrial park
Cluster analysis
Clustering
Data mining
Earth and Environmental Science
Environment
Environment models
environmental models
Environmental risk
environmental risk zoning
Finite element method
Geographic information systems
Industrial areas
Industrial parks
k-means clustering
k-means聚类
Remote sensing
Research Article
risk
Risk analysis
Risk management
silhouette coefficient
Vector quantization
Zoning
化学工业区
南京化学工业园区
应用
数据挖掘技术
最佳聚类数
环境风险
风险区划
title Application of k-means clustering to environmental risk zoning of the chemical industrial area
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20k-means%20clustering%20to%20environmental%20risk%20zoning%20of%20the%20chemical%20industrial%20area&rft.jtitle=Frontiers%20of%20environmental%20science%20&%20engineering&rft.au=Shi,%20Weifang&rft.date=2014-02-01&rft.volume=8&rft.issue=1&rft.spage=117&rft.epage=127&rft.pages=117-127&rft.issn=2095-2201&rft.eissn=2095-221X&rft_id=info:doi/10.1007/s11783-013-0581-5&rft_dat=%3Cproquest_cross%3E1512332546%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918742785&rft_id=info:pmid/&rft_cqvip_id=49082270&rfr_iscdi=true