Path guided motion synthesis for Drosophila larvae
The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2023-10, Vol.24 (10), p.1482-1496 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1496 |
---|---|
container_issue | 10 |
container_start_page | 1482 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 24 |
creator | Chen, Junjun Wang, Yijun Sun, Yixuan Yu, Yifei Liu, Zi’ao Gong, Zhefeng Zheng, Nenggan |
description | The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of
Drosophila
larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path. |
doi_str_mv | 10.1631/FITEE.2200529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918726588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918726588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-f4bae0f06e7d8f2715a549682ec97fb4b8d171832956be87b3871affc11b83213</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EElXpyB6JOcHnJP4YUUmhUiUYymw5id2kSuNgp0j97zFNEQvTnU6_e_fuIXQPOAGawuNqvS2KhBCMcyKu0IxgkceCpPj6twee3aKF93uMMVAQTPAZIu9qbKLdsa11HR3s2No-8qd-bLRvfWSsi56d9XZo2k5FnXJfSt-hG6M6rxeXOkcfq2K7fI03by_r5dMmrgjFY2yyUmlsMNWs5oYwyFWeCcqJrgQzZVbyGhjwlIiclpqzMuUMlDEVQBmmkM7Rw6Q7OPt51H6Ue3t0fTgpSXiGEZpzHqh4oqrg0ztt5ODag3InCVj-JCPPychLMoFPJt4Hrt9p96f6_8I38d5jWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918726588</pqid></control><display><type>article</type><title>Path guided motion synthesis for Drosophila larvae</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Chen, Junjun ; Wang, Yijun ; Sun, Yixuan ; Yu, Yifei ; Liu, Zi’ao ; Gong, Zhefeng ; Zheng, Nenggan</creator><creatorcontrib>Chen, Junjun ; Wang, Yijun ; Sun, Yixuan ; Yu, Yifei ; Liu, Zi’ao ; Gong, Zhefeng ; Zheng, Nenggan</creatorcontrib><description>The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of
Drosophila
larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2200529</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Artificial neural networks ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Formability ; Fruit flies ; Insects ; Instrumentation ; Larvae ; Mollusks ; Networks ; Research Article ; Sequences ; Statistical models ; Synthesis</subject><ispartof>Frontiers of information technology & electronic engineering, 2023-10, Vol.24 (10), p.1482-1496</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-f4bae0f06e7d8f2715a549682ec97fb4b8d171832956be87b3871affc11b83213</cites><orcidid>0000-0001-8364-2188 ; 0000-0002-0211-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.2200529$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918726588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Chen, Junjun</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Yu, Yifei</creatorcontrib><creatorcontrib>Liu, Zi’ao</creatorcontrib><creatorcontrib>Gong, Zhefeng</creatorcontrib><creatorcontrib>Zheng, Nenggan</creatorcontrib><title>Path guided motion synthesis for Drosophila larvae</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of
Drosophila
larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.</description><subject>Artificial neural networks</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Formability</subject><subject>Fruit flies</subject><subject>Insects</subject><subject>Instrumentation</subject><subject>Larvae</subject><subject>Mollusks</subject><subject>Networks</subject><subject>Research Article</subject><subject>Sequences</subject><subject>Statistical models</subject><subject>Synthesis</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkL1PwzAQxS0EElXpyB6JOcHnJP4YUUmhUiUYymw5id2kSuNgp0j97zFNEQvTnU6_e_fuIXQPOAGawuNqvS2KhBCMcyKu0IxgkceCpPj6twee3aKF93uMMVAQTPAZIu9qbKLdsa11HR3s2No-8qd-bLRvfWSsi56d9XZo2k5FnXJfSt-hG6M6rxeXOkcfq2K7fI03by_r5dMmrgjFY2yyUmlsMNWs5oYwyFWeCcqJrgQzZVbyGhjwlIiclpqzMuUMlDEVQBmmkM7Rw6Q7OPt51H6Ue3t0fTgpSXiGEZpzHqh4oqrg0ztt5ODag3InCVj-JCPPychLMoFPJt4Hrt9p96f6_8I38d5jWA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chen, Junjun</creator><creator>Wang, Yijun</creator><creator>Sun, Yixuan</creator><creator>Yu, Yifei</creator><creator>Liu, Zi’ao</creator><creator>Gong, Zhefeng</creator><creator>Zheng, Nenggan</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8364-2188</orcidid><orcidid>https://orcid.org/0000-0002-0211-8817</orcidid></search><sort><creationdate>20231001</creationdate><title>Path guided motion synthesis for Drosophila larvae</title><author>Chen, Junjun ; Wang, Yijun ; Sun, Yixuan ; Yu, Yifei ; Liu, Zi’ao ; Gong, Zhefeng ; Zheng, Nenggan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-f4bae0f06e7d8f2715a549682ec97fb4b8d171832956be87b3871affc11b83213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Formability</topic><topic>Fruit flies</topic><topic>Insects</topic><topic>Instrumentation</topic><topic>Larvae</topic><topic>Mollusks</topic><topic>Networks</topic><topic>Research Article</topic><topic>Sequences</topic><topic>Statistical models</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junjun</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Yu, Yifei</creatorcontrib><creatorcontrib>Liu, Zi’ao</creatorcontrib><creatorcontrib>Gong, Zhefeng</creatorcontrib><creatorcontrib>Zheng, Nenggan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junjun</au><au>Wang, Yijun</au><au>Sun, Yixuan</au><au>Yu, Yifei</au><au>Liu, Zi’ao</au><au>Gong, Zhefeng</au><au>Zheng, Nenggan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path guided motion synthesis for Drosophila larvae</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>10</issue><spage>1482</spage><epage>1496</epage><pages>1482-1496</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of
Drosophila
larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2200529</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8364-2188</orcidid><orcidid>https://orcid.org/0000-0002-0211-8817</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2023-10, Vol.24 (10), p.1482-1496 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918726588 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Artificial neural networks Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Electrical Engineering Electronics and Microelectronics Formability Fruit flies Insects Instrumentation Larvae Mollusks Networks Research Article Sequences Statistical models Synthesis |
title | Path guided motion synthesis for Drosophila larvae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20guided%20motion%20synthesis%20for%20Drosophila%20larvae&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Chen,%20Junjun&rft.date=2023-10-01&rft.volume=24&rft.issue=10&rft.spage=1482&rft.epage=1496&rft.pages=1482-1496&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2200529&rft_dat=%3Cproquest_cross%3E2918726588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918726588&rft_id=info:pmid/&rfr_iscdi=true |