Path guided motion synthesis for Drosophila larvae

The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2023-10, Vol.24 (10), p.1482-1496
Hauptverfasser: Chen, Junjun, Wang, Yijun, Sun, Yixuan, Yu, Yifei, Liu, Zi’ao, Gong, Zhefeng, Zheng, Nenggan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1496
container_issue 10
container_start_page 1482
container_title Frontiers of information technology & electronic engineering
container_volume 24
creator Chen, Junjun
Wang, Yijun
Sun, Yixuan
Yu, Yifei
Liu, Zi’ao
Gong, Zhefeng
Zheng, Nenggan
description The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of Drosophila larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.
doi_str_mv 10.1631/FITEE.2200529
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918726588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918726588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-f4bae0f06e7d8f2715a549682ec97fb4b8d171832956be87b3871affc11b83213</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EElXpyB6JOcHnJP4YUUmhUiUYymw5id2kSuNgp0j97zFNEQvTnU6_e_fuIXQPOAGawuNqvS2KhBCMcyKu0IxgkceCpPj6twee3aKF93uMMVAQTPAZIu9qbKLdsa11HR3s2No-8qd-bLRvfWSsi56d9XZo2k5FnXJfSt-hG6M6rxeXOkcfq2K7fI03by_r5dMmrgjFY2yyUmlsMNWs5oYwyFWeCcqJrgQzZVbyGhjwlIiclpqzMuUMlDEVQBmmkM7Rw6Q7OPt51H6Ue3t0fTgpSXiGEZpzHqh4oqrg0ztt5ODag3InCVj-JCPPychLMoFPJt4Hrt9p96f6_8I38d5jWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918726588</pqid></control><display><type>article</type><title>Path guided motion synthesis for Drosophila larvae</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Chen, Junjun ; Wang, Yijun ; Sun, Yixuan ; Yu, Yifei ; Liu, Zi’ao ; Gong, Zhefeng ; Zheng, Nenggan</creator><creatorcontrib>Chen, Junjun ; Wang, Yijun ; Sun, Yixuan ; Yu, Yifei ; Liu, Zi’ao ; Gong, Zhefeng ; Zheng, Nenggan</creatorcontrib><description>The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of Drosophila larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2200529</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Artificial neural networks ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Formability ; Fruit flies ; Insects ; Instrumentation ; Larvae ; Mollusks ; Networks ; Research Article ; Sequences ; Statistical models ; Synthesis</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2023-10, Vol.24 (10), p.1482-1496</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-f4bae0f06e7d8f2715a549682ec97fb4b8d171832956be87b3871affc11b83213</cites><orcidid>0000-0001-8364-2188 ; 0000-0002-0211-8817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.2200529$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918726588?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21371,27907,27908,33727,41471,42540,43788,51302,64366,64370,72220</link.rule.ids></links><search><creatorcontrib>Chen, Junjun</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Yu, Yifei</creatorcontrib><creatorcontrib>Liu, Zi’ao</creatorcontrib><creatorcontrib>Gong, Zhefeng</creatorcontrib><creatorcontrib>Zheng, Nenggan</creatorcontrib><title>Path guided motion synthesis for Drosophila larvae</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of Drosophila larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.</description><subject>Artificial neural networks</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Formability</subject><subject>Fruit flies</subject><subject>Insects</subject><subject>Instrumentation</subject><subject>Larvae</subject><subject>Mollusks</subject><subject>Networks</subject><subject>Research Article</subject><subject>Sequences</subject><subject>Statistical models</subject><subject>Synthesis</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkL1PwzAQxS0EElXpyB6JOcHnJP4YUUmhUiUYymw5id2kSuNgp0j97zFNEQvTnU6_e_fuIXQPOAGawuNqvS2KhBCMcyKu0IxgkceCpPj6twee3aKF93uMMVAQTPAZIu9qbKLdsa11HR3s2No-8qd-bLRvfWSsi56d9XZo2k5FnXJfSt-hG6M6rxeXOkcfq2K7fI03by_r5dMmrgjFY2yyUmlsMNWs5oYwyFWeCcqJrgQzZVbyGhjwlIiclpqzMuUMlDEVQBmmkM7Rw6Q7OPt51H6Ue3t0fTgpSXiGEZpzHqh4oqrg0ztt5ODag3InCVj-JCPPychLMoFPJt4Hrt9p96f6_8I38d5jWA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Chen, Junjun</creator><creator>Wang, Yijun</creator><creator>Sun, Yixuan</creator><creator>Yu, Yifei</creator><creator>Liu, Zi’ao</creator><creator>Gong, Zhefeng</creator><creator>Zheng, Nenggan</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8364-2188</orcidid><orcidid>https://orcid.org/0000-0002-0211-8817</orcidid></search><sort><creationdate>20231001</creationdate><title>Path guided motion synthesis for Drosophila larvae</title><author>Chen, Junjun ; Wang, Yijun ; Sun, Yixuan ; Yu, Yifei ; Liu, Zi’ao ; Gong, Zhefeng ; Zheng, Nenggan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-f4bae0f06e7d8f2715a549682ec97fb4b8d171832956be87b3871affc11b83213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Formability</topic><topic>Fruit flies</topic><topic>Insects</topic><topic>Instrumentation</topic><topic>Larvae</topic><topic>Mollusks</topic><topic>Networks</topic><topic>Research Article</topic><topic>Sequences</topic><topic>Statistical models</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Junjun</creatorcontrib><creatorcontrib>Wang, Yijun</creatorcontrib><creatorcontrib>Sun, Yixuan</creatorcontrib><creatorcontrib>Yu, Yifei</creatorcontrib><creatorcontrib>Liu, Zi’ao</creatorcontrib><creatorcontrib>Gong, Zhefeng</creatorcontrib><creatorcontrib>Zheng, Nenggan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Junjun</au><au>Wang, Yijun</au><au>Sun, Yixuan</au><au>Yu, Yifei</au><au>Liu, Zi’ao</au><au>Gong, Zhefeng</au><au>Zheng, Nenggan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path guided motion synthesis for Drosophila larvae</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>24</volume><issue>10</issue><spage>1482</spage><epage>1496</epage><pages>1482-1496</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>The deformability and high degree of freedom of mollusks bring challenges in mathematical modeling and synthesis of motions. Traditional analytical and statistical models are limited by either rigid skeleton assumptions or model capacity, and have difficulty in generating realistic and multi-pattern mollusk motions. In this work, we present a large-scale dynamic pose dataset of Drosophila larvae and propose a motion synthesis model named Path2Pose to generate a pose sequence given the initial poses and the subsequent guiding path. The Path2Pose model is further used to synthesize long pose sequences of various motion patterns through a recursive generation method. Evaluation analysis results demonstrate that our novel model synthesizes highly realistic mollusk motions and achieves state-of-the-art performance. Our work proves high performance of deep neural networks for mollusk motion synthesis and the feasibility of long pose sequence synthesis based on the customized body shape and guiding path.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2200529</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8364-2188</orcidid><orcidid>https://orcid.org/0000-0002-0211-8817</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2023-10, Vol.24 (10), p.1482-1496
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2918726588
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Artificial neural networks
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Electrical Engineering
Electronics and Microelectronics
Formability
Fruit flies
Insects
Instrumentation
Larvae
Mollusks
Networks
Research Article
Sequences
Statistical models
Synthesis
title Path guided motion synthesis for Drosophila larvae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A11%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20guided%20motion%20synthesis%20for%20Drosophila%20larvae&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Chen,%20Junjun&rft.date=2023-10-01&rft.volume=24&rft.issue=10&rft.spage=1482&rft.epage=1496&rft.pages=1482-1496&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2200529&rft_dat=%3Cproquest_cross%3E2918726588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918726588&rft_id=info:pmid/&rfr_iscdi=true