Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand
Autonomous object manipulation is a challenging task in robotics because it requires an essential understanding of the object’s parameters such as position, 3D shape, grasping (i.e., touching) areas, and orientation. This work presents an autonomous object manipulation system using an anthropomorphi...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-01, Vol.13 (2), p.379 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Valarezo Añazco, Edwin Guerrero, Sara Rivera Lopez, Patricio Oh, Ji-Heon Ryu, Ga-Hyeon Kim, Tae-Seong |
description | Autonomous object manipulation is a challenging task in robotics because it requires an essential understanding of the object’s parameters such as position, 3D shape, grasping (i.e., touching) areas, and orientation. This work presents an autonomous object manipulation system using an anthropomorphic soft robot hand with deep learning (DL) vision intelligence for object detection, 3D shape reconstruction, and object grasping area generation. Object detection is performed using Faster-RCNN and an RGB-D sensor to produce a partial depth view of the objects randomly located in the working space. Three-dimensional object shape reconstruction is performed using U-Net based on 3D convolutions with bottle-neck layers and skip connections generating a complete 3D shape of the object from the sensed single-depth view. Then, the grasping position and orientation are computed based on the reconstructed 3D object information (e.g., object shape and size) using U-Net based on 3D convolutions and Principal Component Analysis (PCA), respectively. The proposed autonomous object manipulation system is evaluated by grasping and relocating twelve objects not included in the training database, achieving an average of 95% successful object grasping and 93% object relocations. |
doi_str_mv | 10.3390/electronics13020379 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2918725265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780874454</galeid><sourcerecordid>A780874454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-2c10f978f0443796cfcb87e276dc81244faddc2e151315b66e303ea9b4f4618b3</originalsourceid><addsrcrecordid>eNptUctOwzAQjBBIVNAv4GKJc4pfefgYyqNIRZV4nCPHWbeuUjvYjhB_j1E5cGD3sKvVzI5Gk2VXBC8YE_gGBlDRO2tUIAxTzCpxks0orkQuqKCnf_bzbB7CHqcShNUMz7LxDmBEa5DeGrvNb2WAHt3bAIduANSMo3dS7ZB2HjVTdNYd3BTQptsnTfQsrRmnQUbjLPo0cYekRY2NO-_GBPTjzij06nREL65zEa2k7S-zMy2HAPPfeZG9P9y_LVf5evP4tGzWuWKExJwqgrWoao05T4ZKpVVXV0Crslc1oZxr2feKAikII0VXlsAwAyk6rnlJ6o5dZNfHv8nBxwQhtns3eZskWypIXdGClkVCLY6orRygNVa76KVK3cPBKGdBm3RvqhrXFecFTwR2JCjvQvCg29Gbg_RfLcHtTxztP3Gwb6VwgTQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918725265</pqid></control><display><type>article</type><title>Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Valarezo Añazco, Edwin ; Guerrero, Sara ; Rivera Lopez, Patricio ; Oh, Ji-Heon ; Ryu, Ga-Hyeon ; Kim, Tae-Seong</creator><creatorcontrib>Valarezo Añazco, Edwin ; Guerrero, Sara ; Rivera Lopez, Patricio ; Oh, Ji-Heon ; Ryu, Ga-Hyeon ; Kim, Tae-Seong</creatorcontrib><description>Autonomous object manipulation is a challenging task in robotics because it requires an essential understanding of the object’s parameters such as position, 3D shape, grasping (i.e., touching) areas, and orientation. This work presents an autonomous object manipulation system using an anthropomorphic soft robot hand with deep learning (DL) vision intelligence for object detection, 3D shape reconstruction, and object grasping area generation. Object detection is performed using Faster-RCNN and an RGB-D sensor to produce a partial depth view of the objects randomly located in the working space. Three-dimensional object shape reconstruction is performed using U-Net based on 3D convolutions with bottle-neck layers and skip connections generating a complete 3D shape of the object from the sensed single-depth view. Then, the grasping position and orientation are computed based on the reconstructed 3D object information (e.g., object shape and size) using U-Net based on 3D convolutions and Principal Component Analysis (PCA), respectively. The proposed autonomous object manipulation system is evaluated by grasping and relocating twelve objects not included in the training database, achieving an average of 95% successful object grasping and 93% object relocations.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13020379</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Anthropomorphism ; Cameras ; Control systems ; Deep learning ; Design and construction ; End effectors ; Grasping ; Machine learning ; Neural networks ; Object recognition ; Principal components analysis ; Reconstruction ; Robot arms ; Robot learning ; Robots ; Sensors ; Soft robotics</subject><ispartof>Electronics (Basel), 2024-01, Vol.13 (2), p.379</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-2c10f978f0443796cfcb87e276dc81244faddc2e151315b66e303ea9b4f4618b3</cites><orcidid>0000-0003-0077-8528 ; 0000-0001-7118-1708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Valarezo Añazco, Edwin</creatorcontrib><creatorcontrib>Guerrero, Sara</creatorcontrib><creatorcontrib>Rivera Lopez, Patricio</creatorcontrib><creatorcontrib>Oh, Ji-Heon</creatorcontrib><creatorcontrib>Ryu, Ga-Hyeon</creatorcontrib><creatorcontrib>Kim, Tae-Seong</creatorcontrib><title>Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand</title><title>Electronics (Basel)</title><description>Autonomous object manipulation is a challenging task in robotics because it requires an essential understanding of the object’s parameters such as position, 3D shape, grasping (i.e., touching) areas, and orientation. This work presents an autonomous object manipulation system using an anthropomorphic soft robot hand with deep learning (DL) vision intelligence for object detection, 3D shape reconstruction, and object grasping area generation. Object detection is performed using Faster-RCNN and an RGB-D sensor to produce a partial depth view of the objects randomly located in the working space. Three-dimensional object shape reconstruction is performed using U-Net based on 3D convolutions with bottle-neck layers and skip connections generating a complete 3D shape of the object from the sensed single-depth view. Then, the grasping position and orientation are computed based on the reconstructed 3D object information (e.g., object shape and size) using U-Net based on 3D convolutions and Principal Component Analysis (PCA), respectively. The proposed autonomous object manipulation system is evaluated by grasping and relocating twelve objects not included in the training database, achieving an average of 95% successful object grasping and 93% object relocations.</description><subject>Algorithms</subject><subject>Anthropomorphism</subject><subject>Cameras</subject><subject>Control systems</subject><subject>Deep learning</subject><subject>Design and construction</subject><subject>End effectors</subject><subject>Grasping</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Principal components analysis</subject><subject>Reconstruction</subject><subject>Robot arms</subject><subject>Robot learning</subject><subject>Robots</subject><subject>Sensors</subject><subject>Soft robotics</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptUctOwzAQjBBIVNAv4GKJc4pfefgYyqNIRZV4nCPHWbeuUjvYjhB_j1E5cGD3sKvVzI5Gk2VXBC8YE_gGBlDRO2tUIAxTzCpxks0orkQuqKCnf_bzbB7CHqcShNUMz7LxDmBEa5DeGrvNb2WAHt3bAIduANSMo3dS7ZB2HjVTdNYd3BTQptsnTfQsrRmnQUbjLPo0cYekRY2NO-_GBPTjzij06nREL65zEa2k7S-zMy2HAPPfeZG9P9y_LVf5evP4tGzWuWKExJwqgrWoao05T4ZKpVVXV0Crslc1oZxr2feKAikII0VXlsAwAyk6rnlJ6o5dZNfHv8nBxwQhtns3eZskWypIXdGClkVCLY6orRygNVa76KVK3cPBKGdBm3RvqhrXFecFTwR2JCjvQvCg29Gbg_RfLcHtTxztP3Gwb6VwgTQ</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Valarezo Añazco, Edwin</creator><creator>Guerrero, Sara</creator><creator>Rivera Lopez, Patricio</creator><creator>Oh, Ji-Heon</creator><creator>Ryu, Ga-Hyeon</creator><creator>Kim, Tae-Seong</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-0077-8528</orcidid><orcidid>https://orcid.org/0000-0001-7118-1708</orcidid></search><sort><creationdate>20240101</creationdate><title>Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand</title><author>Valarezo Añazco, Edwin ; Guerrero, Sara ; Rivera Lopez, Patricio ; Oh, Ji-Heon ; Ryu, Ga-Hyeon ; Kim, Tae-Seong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-2c10f978f0443796cfcb87e276dc81244faddc2e151315b66e303ea9b4f4618b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anthropomorphism</topic><topic>Cameras</topic><topic>Control systems</topic><topic>Deep learning</topic><topic>Design and construction</topic><topic>End effectors</topic><topic>Grasping</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Principal components analysis</topic><topic>Reconstruction</topic><topic>Robot arms</topic><topic>Robot learning</topic><topic>Robots</topic><topic>Sensors</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valarezo Añazco, Edwin</creatorcontrib><creatorcontrib>Guerrero, Sara</creatorcontrib><creatorcontrib>Rivera Lopez, Patricio</creatorcontrib><creatorcontrib>Oh, Ji-Heon</creatorcontrib><creatorcontrib>Ryu, Ga-Hyeon</creatorcontrib><creatorcontrib>Kim, Tae-Seong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valarezo Añazco, Edwin</au><au>Guerrero, Sara</au><au>Rivera Lopez, Patricio</au><au>Oh, Ji-Heon</au><au>Ryu, Ga-Hyeon</au><au>Kim, Tae-Seong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>13</volume><issue>2</issue><spage>379</spage><pages>379-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Autonomous object manipulation is a challenging task in robotics because it requires an essential understanding of the object’s parameters such as position, 3D shape, grasping (i.e., touching) areas, and orientation. This work presents an autonomous object manipulation system using an anthropomorphic soft robot hand with deep learning (DL) vision intelligence for object detection, 3D shape reconstruction, and object grasping area generation. Object detection is performed using Faster-RCNN and an RGB-D sensor to produce a partial depth view of the objects randomly located in the working space. Three-dimensional object shape reconstruction is performed using U-Net based on 3D convolutions with bottle-neck layers and skip connections generating a complete 3D shape of the object from the sensed single-depth view. Then, the grasping position and orientation are computed based on the reconstructed 3D object information (e.g., object shape and size) using U-Net based on 3D convolutions and Principal Component Analysis (PCA), respectively. The proposed autonomous object manipulation system is evaluated by grasping and relocating twelve objects not included in the training database, achieving an average of 95% successful object grasping and 93% object relocations.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13020379</doi><orcidid>https://orcid.org/0000-0003-0077-8528</orcidid><orcidid>https://orcid.org/0000-0001-7118-1708</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-01, Vol.13 (2), p.379 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2918725265 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Anthropomorphism Cameras Control systems Deep learning Design and construction End effectors Grasping Machine learning Neural networks Object recognition Principal components analysis Reconstruction Robot arms Robot learning Robots Sensors Soft robotics |
title | Deep Learning-Based Ensemble Approach for Autonomous Object Manipulation with an Anthropomorphic Soft Robot Hand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning-Based%20Ensemble%20Approach%20for%20Autonomous%20Object%20Manipulation%20with%20an%20Anthropomorphic%20Soft%20Robot%20Hand&rft.jtitle=Electronics%20(Basel)&rft.au=Valarezo%20A%C3%B1azco,%20Edwin&rft.date=2024-01-01&rft.volume=13&rft.issue=2&rft.spage=379&rft.pages=379-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13020379&rft_dat=%3Cgale_proqu%3EA780874454%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918725265&rft_id=info:pmid/&rft_galeid=A780874454&rfr_iscdi=true |