Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy
Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2017-08, Vol.18 (8), p.1151-1166 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1166 |
---|---|
container_issue | 8 |
container_start_page | 1151 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 18 |
creator | Yang, Jia-qiang Yin, Rong-sen Zhang, Xiao-jun Huang, Jin |
description | Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy. |
doi_str_mv | 10.1631/FITEE.1601728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918725206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673093793</cqvip_id><sourcerecordid>2918725206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhSMEEhV0ZLdgDviRxM6IqhYqVWIpc-Q6N4mr1E5tF-jOD8e0BSam-9B3zpFOktwQfE8KRh5m8-V0GldMOBVnyYjiMk9LyvD5z05EdpmMvV9jjElBSl6KUfI5_RisARO07JEDHw8PCHpQwWkVf4PtIVWdNK02LdpA6GyNGuuQRI1-g3ToZBRoU-9U0NagjVSdNoDedegio3bORXfke10fDGwNSFkTnO2RD04GaPfXyUUjew_j07xKXmfT5eQ5Xbw8zSePi1QxRkJaK8iwECtRQ02zhlKSS6pEwXNCFROY8zyDJuOCikIxTLOSrEq1kjVlEZY5u0rujr6Ds9sd-FCt7c6ZGFnRWA-nOcVFpNIjpZz13kFTDU5vpNtXBFffXVeHrqtT15G_P_I-cqYF9-f6n-D2FNBZ026j5jeh4AyXjJeMfQGTw412</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918725206</pqid></control><display><type>article</type><title>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Jia-qiang ; Yin, Rong-sen ; Zhang, Xiao-jun ; Huang, Jin</creator><creatorcontrib>Yang, Jia-qiang ; Yin, Rong-sen ; Zhang, Xiao-jun ; Huang, Jin</creatorcontrib><description>Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1601728</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Control methods ; Controllers ; Digital signal processors ; Electric vehicles ; Electrical Engineering ; Electronics and Microelectronics ; Induction motors ; Instrumentation ; Networks ; Proportional integral ; Ripples ; Sliding mode control ; Step response ; Torque</subject><ispartof>Frontiers of information technology & electronic engineering, 2017-08, Vol.18 (8), p.1151-1166</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</citedby><cites>FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</cites><orcidid>0000-0002-3822-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1601728$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918725206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Yang, Jia-qiang</creatorcontrib><creatorcontrib>Yin, Rong-sen</creatorcontrib><creatorcontrib>Zhang, Xiao-jun</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><title>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.</description><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Digital signal processors</subject><subject>Electric vehicles</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Induction motors</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Proportional integral</subject><subject>Ripples</subject><subject>Sliding mode control</subject><subject>Step response</subject><subject>Torque</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtPwzAUhSMEEhV0ZLdgDviRxM6IqhYqVWIpc-Q6N4mr1E5tF-jOD8e0BSam-9B3zpFOktwQfE8KRh5m8-V0GldMOBVnyYjiMk9LyvD5z05EdpmMvV9jjElBSl6KUfI5_RisARO07JEDHw8PCHpQwWkVf4PtIVWdNK02LdpA6GyNGuuQRI1-g3ToZBRoU-9U0NagjVSdNoDedegio3bORXfke10fDGwNSFkTnO2RD04GaPfXyUUjew_j07xKXmfT5eQ5Xbw8zSePi1QxRkJaK8iwECtRQ02zhlKSS6pEwXNCFROY8zyDJuOCikIxTLOSrEq1kjVlEZY5u0rujr6Ds9sd-FCt7c6ZGFnRWA-nOcVFpNIjpZz13kFTDU5vpNtXBFffXVeHrqtT15G_P_I-cqYF9-f6n-D2FNBZ026j5jeh4AyXjJeMfQGTw412</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Yang, Jia-qiang</creator><creator>Yin, Rong-sen</creator><creator>Zhang, Xiao-jun</creator><creator>Huang, Jin</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3822-3301</orcidid></search><sort><creationdate>20170801</creationdate><title>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</title><author>Yang, Jia-qiang ; Yin, Rong-sen ; Zhang, Xiao-jun ; Huang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Digital signal processors</topic><topic>Electric vehicles</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Induction motors</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Proportional integral</topic><topic>Ripples</topic><topic>Sliding mode control</topic><topic>Step response</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jia-qiang</creatorcontrib><creatorcontrib>Yin, Rong-sen</creatorcontrib><creatorcontrib>Zhang, Xiao-jun</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jia-qiang</au><au>Yin, Rong-sen</au><au>Zhang, Xiao-jun</au><au>Huang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>18</volume><issue>8</issue><spage>1151</spage><epage>1166</epage><pages>1151-1166</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1601728</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3822-3301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2017-08, Vol.18 (8), p.1151-1166 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918725206 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Control methods Controllers Digital signal processors Electric vehicles Electrical Engineering Electronics and Microelectronics Induction motors Instrumentation Networks Proportional integral Ripples Sliding mode control Step response Torque |
title | Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20response%20electrical%20pole-changing%20method%20for%20a%20five-phase%20induction%20machine%20with%20a%20current%20sliding%20mode%20control%20strategy&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Yang,%20Jia-qiang&rft.date=2017-08-01&rft.volume=18&rft.issue=8&rft.spage=1151&rft.epage=1166&rft.pages=1151-1166&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1601728&rft_dat=%3Cproquest_cross%3E2918725206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918725206&rft_id=info:pmid/&rft_cqvip_id=673093793&rfr_iscdi=true |