Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy

Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2017-08, Vol.18 (8), p.1151-1166
Hauptverfasser: Yang, Jia-qiang, Yin, Rong-sen, Zhang, Xiao-jun, Huang, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1166
container_issue 8
container_start_page 1151
container_title Frontiers of information technology & electronic engineering
container_volume 18
creator Yang, Jia-qiang
Yin, Rong-sen
Zhang, Xiao-jun
Huang, Jin
description Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.
doi_str_mv 10.1631/FITEE.1601728
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918725206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673093793</cqvip_id><sourcerecordid>2918725206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhSMEEhV0ZLdgDviRxM6IqhYqVWIpc-Q6N4mr1E5tF-jOD8e0BSam-9B3zpFOktwQfE8KRh5m8-V0GldMOBVnyYjiMk9LyvD5z05EdpmMvV9jjElBSl6KUfI5_RisARO07JEDHw8PCHpQwWkVf4PtIVWdNK02LdpA6GyNGuuQRI1-g3ToZBRoU-9U0NagjVSdNoDedegio3bORXfke10fDGwNSFkTnO2RD04GaPfXyUUjew_j07xKXmfT5eQ5Xbw8zSePi1QxRkJaK8iwECtRQ02zhlKSS6pEwXNCFROY8zyDJuOCikIxTLOSrEq1kjVlEZY5u0rujr6Ds9sd-FCt7c6ZGFnRWA-nOcVFpNIjpZz13kFTDU5vpNtXBFffXVeHrqtT15G_P_I-cqYF9-f6n-D2FNBZ026j5jeh4AyXjJeMfQGTw412</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918725206</pqid></control><display><type>article</type><title>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yang, Jia-qiang ; Yin, Rong-sen ; Zhang, Xiao-jun ; Huang, Jin</creator><creatorcontrib>Yang, Jia-qiang ; Yin, Rong-sen ; Zhang, Xiao-jun ; Huang, Jin</creatorcontrib><description>Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1601728</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Control methods ; Controllers ; Digital signal processors ; Electric vehicles ; Electrical Engineering ; Electronics and Microelectronics ; Induction motors ; Instrumentation ; Networks ; Proportional integral ; Ripples ; Sliding mode control ; Step response ; Torque</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2017-08, Vol.18 (8), p.1151-1166</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</citedby><cites>FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</cites><orcidid>0000-0002-3822-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1601728$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918725206?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Yang, Jia-qiang</creatorcontrib><creatorcontrib>Yin, Rong-sen</creatorcontrib><creatorcontrib>Zhang, Xiao-jun</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><title>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.</description><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Control methods</subject><subject>Controllers</subject><subject>Digital signal processors</subject><subject>Electric vehicles</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Induction motors</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Proportional integral</subject><subject>Ripples</subject><subject>Sliding mode control</subject><subject>Step response</subject><subject>Torque</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDtPwzAUhSMEEhV0ZLdgDviRxM6IqhYqVWIpc-Q6N4mr1E5tF-jOD8e0BSam-9B3zpFOktwQfE8KRh5m8-V0GldMOBVnyYjiMk9LyvD5z05EdpmMvV9jjElBSl6KUfI5_RisARO07JEDHw8PCHpQwWkVf4PtIVWdNK02LdpA6GyNGuuQRI1-g3ToZBRoU-9U0NagjVSdNoDedegio3bORXfke10fDGwNSFkTnO2RD04GaPfXyUUjew_j07xKXmfT5eQ5Xbw8zSePi1QxRkJaK8iwECtRQ02zhlKSS6pEwXNCFROY8zyDJuOCikIxTLOSrEq1kjVlEZY5u0rujr6Ds9sd-FCt7c6ZGFnRWA-nOcVFpNIjpZz13kFTDU5vpNtXBFffXVeHrqtT15G_P_I-cqYF9-f6n-D2FNBZ026j5jeh4AyXjJeMfQGTw412</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Yang, Jia-qiang</creator><creator>Yin, Rong-sen</creator><creator>Zhang, Xiao-jun</creator><creator>Huang, Jin</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3822-3301</orcidid></search><sort><creationdate>20170801</creationdate><title>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</title><author>Yang, Jia-qiang ; Yin, Rong-sen ; Zhang, Xiao-jun ; Huang, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-dce4088b8ded24f2215a2c867512c3807754ef478286c302491b9cbad23f22a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Control methods</topic><topic>Controllers</topic><topic>Digital signal processors</topic><topic>Electric vehicles</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Induction motors</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Proportional integral</topic><topic>Ripples</topic><topic>Sliding mode control</topic><topic>Step response</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jia-qiang</creatorcontrib><creatorcontrib>Yin, Rong-sen</creatorcontrib><creatorcontrib>Zhang, Xiao-jun</creatorcontrib><creatorcontrib>Huang, Jin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jia-qiang</au><au>Yin, Rong-sen</au><au>Zhang, Xiao-jun</au><au>Huang, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>18</volume><issue>8</issue><spage>1151</spage><epage>1166</epage><pages>1151-1166</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Electrical pole-changing technology leads to torque ripple and speed fluctuation despite broadening the constant power speed range of the multiphase induction machine (IM) system. To reduce the torque ripple and speed fluctuation of the machine, we investigate an exponential response electrical pole-changing method for five-phase IM with a current sliding-mode control strategy. This control strategy employs the dual-plane (dr-q1 and d2-q2) vector control method, which allows the IM to operate under different pole modes. Current sliding-mode controllers are applied instead of conventional proportional integral (PI) controllers to adjust the current vectors, and exponential current response achieves a smooth transition between the d1-q1 and d2-q2 planes. Compared with the step response pole-changing with PI control method, the proposed pole-changing method greatly reduces the torque ripple and speed fluctuation of the IM during the pole-changing process. Experimental results verify the ex- ceptional performance of the proposed electrical pole-changing strategy.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1601728</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3822-3301</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2017-08, Vol.18 (8), p.1151-1166
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2918725206
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Control methods
Controllers
Digital signal processors
Electric vehicles
Electrical Engineering
Electronics and Microelectronics
Induction motors
Instrumentation
Networks
Proportional integral
Ripples
Sliding mode control
Step response
Torque
title Exponential response electrical pole-changing method for a five-phase induction machine with a current sliding mode control strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A06%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20response%20electrical%20pole-changing%20method%20for%20a%20five-phase%20induction%20machine%20with%20a%20current%20sliding%20mode%20control%20strategy&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Yang,%20Jia-qiang&rft.date=2017-08-01&rft.volume=18&rft.issue=8&rft.spage=1151&rft.epage=1166&rft.pages=1151-1166&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1601728&rft_dat=%3Cproquest_cross%3E2918725206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918725206&rft_id=info:pmid/&rft_cqvip_id=673093793&rfr_iscdi=true