Past review, current progress, and challenges ahead on the cocktail party problem
The cocktail party problem, i.e., tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously, is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition (ASR) systems. In this overview paper, we review the...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2018, Vol.19 (1), p.40-63 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 40 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 19 |
creator | Qian, Yan-min Weng, Chao Chang, Xuan-kai Wang, Shuai Yu, Dong |
description | The cocktail party problem, i.e., tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously, is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition (ASR) systems. In this overview paper, we review the techniques proposed in the last two decades in attacking this problem. We focus our discussions on the speech separation problem given its central role in the cocktail party environment, and describe the conventional single-channel techniques such as computational auditory scene analysis (CASA), non-negative matrix factorization (NMF) and generative models, the conventional multi-channel techniques such as beamforming and multi-channel blind source separation, and the newly developed deep learning-based techniques, such as deep clustering (DPCL), the deep attractor network (DANet), and permutation invariant training (PIT). We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment. We argue effectively exploiting information in the microphone array, the acoustic training set, and the language itself using a more powerful model. Better optimization objective and techniques will be the approach to solving the cocktail party problem. |
doi_str_mv | 10.1631/FITEE.1700814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918725035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918725035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-c6803dad2fa2810af1ed897ba03c0968581072103844240d5f35833fb64dec6e3</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWGqP3gNeu-sk2exmj1JaLRRUqOeQZmf74Xa3JqnS_97UVrx4mmH4vTe8R8gtg5Tlgt1PpvPxOGUFgGLZBelxKGVScgGXvztT2TUZeL8BAJazsihVj7y-GB-ow881fg2p3TuHbaA71y0dej-kpq2oXZmmwXaJnpoVmop2LQ0rpLaz78GsG7ozLhyOokWD2xtyVZvG4-A8--RtMp6PnpLZ8-N09DBLrJBFSGyuQFSm4rXhioGpGVaqLBYGhIUyVzIeC85AqCzjGVSyFlIJUS_yrEKbo-iTu5Nv_PuxRx_0ptu7Nr7UPGYtuAQhI5WcKOs67x3WeufWW-MOmoE-Fqd_itPn4iKfnngfuRjZ_bn-L_gGajJt_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918725035</pqid></control><display><type>article</type><title>Past review, current progress, and challenges ahead on the cocktail party problem</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Qian, Yan-min ; Weng, Chao ; Chang, Xuan-kai ; Wang, Shuai ; Yu, Dong</creator><creatorcontrib>Qian, Yan-min ; Weng, Chao ; Chang, Xuan-kai ; Wang, Shuai ; Yu, Dong</creatorcontrib><description>The cocktail party problem, i.e., tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously, is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition (ASR) systems. In this overview paper, we review the techniques proposed in the last two decades in attacking this problem. We focus our discussions on the speech separation problem given its central role in the cocktail party environment, and describe the conventional single-channel techniques such as computational auditory scene analysis (CASA), non-negative matrix factorization (NMF) and generative models, the conventional multi-channel techniques such as beamforming and multi-channel blind source separation, and the newly developed deep learning-based techniques, such as deep clustering (DPCL), the deep attractor network (DANet), and permutation invariant training (PIT). We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment. We argue effectively exploiting information in the microphone array, the acoustic training set, and the language itself using a more powerful model. Better optimization objective and techniques will be the approach to solving the cocktail party problem.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1700814</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Automatic speech recognition ; Beamforming ; Clustering ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Computers ; Deep learning ; Electrical Engineering ; Electronics and Microelectronics ; Instrumentation ; Machine learning ; Musical instruments ; Networks ; Performance evaluation ; Permutations ; Review ; Scene analysis ; Signal processing ; Sound ; Speech ; Voice recognition</subject><ispartof>Frontiers of information technology & electronic engineering, 2018, Vol.19 (1), p.40-63</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2018.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-c6803dad2fa2810af1ed897ba03c0968581072103844240d5f35833fb64dec6e3</citedby><cites>FETCH-LOGICAL-c357t-c6803dad2fa2810af1ed897ba03c0968581072103844240d5f35833fb64dec6e3</cites><orcidid>0000-0002-0314-3790</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1700814$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918725035?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297</link.rule.ids></links><search><creatorcontrib>Qian, Yan-min</creatorcontrib><creatorcontrib>Weng, Chao</creatorcontrib><creatorcontrib>Chang, Xuan-kai</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Yu, Dong</creatorcontrib><title>Past review, current progress, and challenges ahead on the cocktail party problem</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><description>The cocktail party problem, i.e., tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously, is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition (ASR) systems. In this overview paper, we review the techniques proposed in the last two decades in attacking this problem. We focus our discussions on the speech separation problem given its central role in the cocktail party environment, and describe the conventional single-channel techniques such as computational auditory scene analysis (CASA), non-negative matrix factorization (NMF) and generative models, the conventional multi-channel techniques such as beamforming and multi-channel blind source separation, and the newly developed deep learning-based techniques, such as deep clustering (DPCL), the deep attractor network (DANet), and permutation invariant training (PIT). We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment. We argue effectively exploiting information in the microphone array, the acoustic training set, and the language itself using a more powerful model. Better optimization objective and techniques will be the approach to solving the cocktail party problem.</description><subject>Automatic speech recognition</subject><subject>Beamforming</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Computers</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Machine learning</subject><subject>Musical instruments</subject><subject>Networks</subject><subject>Performance evaluation</subject><subject>Permutations</subject><subject>Review</subject><subject>Scene analysis</subject><subject>Signal processing</subject><subject>Sound</subject><subject>Speech</subject><subject>Voice recognition</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptkM1LAzEQxYMoWGqP3gNeu-sk2exmj1JaLRRUqOeQZmf74Xa3JqnS_97UVrx4mmH4vTe8R8gtg5Tlgt1PpvPxOGUFgGLZBelxKGVScgGXvztT2TUZeL8BAJazsihVj7y-GB-ow881fg2p3TuHbaA71y0dej-kpq2oXZmmwXaJnpoVmop2LQ0rpLaz78GsG7ozLhyOokWD2xtyVZvG4-A8--RtMp6PnpLZ8-N09DBLrJBFSGyuQFSm4rXhioGpGVaqLBYGhIUyVzIeC85AqCzjGVSyFlIJUS_yrEKbo-iTu5Nv_PuxRx_0ptu7Nr7UPGYtuAQhI5WcKOs67x3WeufWW-MOmoE-Fqd_itPn4iKfnngfuRjZ_bn-L_gGajJt_g</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Qian, Yan-min</creator><creator>Weng, Chao</creator><creator>Chang, Xuan-kai</creator><creator>Wang, Shuai</creator><creator>Yu, Dong</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0314-3790</orcidid></search><sort><creationdate>2018</creationdate><title>Past review, current progress, and challenges ahead on the cocktail party problem</title><author>Qian, Yan-min ; Weng, Chao ; Chang, Xuan-kai ; Wang, Shuai ; Yu, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-c6803dad2fa2810af1ed897ba03c0968581072103844240d5f35833fb64dec6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automatic speech recognition</topic><topic>Beamforming</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Computers</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Machine learning</topic><topic>Musical instruments</topic><topic>Networks</topic><topic>Performance evaluation</topic><topic>Permutations</topic><topic>Review</topic><topic>Scene analysis</topic><topic>Signal processing</topic><topic>Sound</topic><topic>Speech</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Yan-min</creatorcontrib><creatorcontrib>Weng, Chao</creatorcontrib><creatorcontrib>Chang, Xuan-kai</creatorcontrib><creatorcontrib>Wang, Shuai</creatorcontrib><creatorcontrib>Yu, Dong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Yan-min</au><au>Weng, Chao</au><au>Chang, Xuan-kai</au><au>Wang, Shuai</au><au>Yu, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Past review, current progress, and challenges ahead on the cocktail party problem</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><date>2018</date><risdate>2018</risdate><volume>19</volume><issue>1</issue><spage>40</spage><epage>63</epage><pages>40-63</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>The cocktail party problem, i.e., tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously, is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition (ASR) systems. In this overview paper, we review the techniques proposed in the last two decades in attacking this problem. We focus our discussions on the speech separation problem given its central role in the cocktail party environment, and describe the conventional single-channel techniques such as computational auditory scene analysis (CASA), non-negative matrix factorization (NMF) and generative models, the conventional multi-channel techniques such as beamforming and multi-channel blind source separation, and the newly developed deep learning-based techniques, such as deep clustering (DPCL), the deep attractor network (DANet), and permutation invariant training (PIT). We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment. We argue effectively exploiting information in the microphone array, the acoustic training set, and the language itself using a more powerful model. Better optimization objective and techniques will be the approach to solving the cocktail party problem.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1700814</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-0314-3790</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2018, Vol.19 (1), p.40-63 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918725035 |
source | SpringerLink Journals; Alma/SFX Local Collection; ProQuest Central |
subjects | Automatic speech recognition Beamforming Clustering Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Computers Deep learning Electrical Engineering Electronics and Microelectronics Instrumentation Machine learning Musical instruments Networks Performance evaluation Permutations Review Scene analysis Signal processing Sound Speech Voice recognition |
title | Past review, current progress, and challenges ahead on the cocktail party problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Past%20review,%20current%20progress,%20and%20challenges%20ahead%20on%20the%20cocktail%20party%20problem&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Qian,%20Yan-min&rft.date=2018&rft.volume=19&rft.issue=1&rft.spage=40&rft.epage=63&rft.pages=40-63&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1700814&rft_dat=%3Cproquest_cross%3E2918725035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918725035&rft_id=info:pmid/&rfr_iscdi=true |