A statistical distribution texton feature for synthetic aperture radar image classification

We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2017-10, Vol.18 (10), p.1614-1623
Hauptverfasser: He, Chu, Ye, Ya-ping, Tian, Ling, Yang, Guo-peng, Chen, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1623
container_issue 10
container_start_page 1614
container_title Frontiers of information technology & electronic engineering
container_volume 18
creator He, Chu
Ye, Ya-ping
Tian, Ling
Yang, Guo-peng
Chen, Dong
description We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.
doi_str_mv 10.1631/FITEE.1601051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918724468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>74908583504849554948484952</cqvip_id><sourcerecordid>2918724468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</originalsourceid><addsrcrecordid>eNp1UE1PAjEUbIwmEuTovYnnxX7THgkBJSHxgicPm-5uC0twF9puIv_et4B68jSTl3kz7w1Cj5SMqeL0ebFcz-dACSWS3qABI0ZmhnFy-8OpFvdoFOOOEEIVNROjB-hjimOyqY6pLu0eV0BCXXSpbhuc3FcC8M6mLjjs24DjqUlbB1psDy6cx8FWNuD6024cLvc2xtqDVW_wgO683Uc3uuIQvS_m69lrtnp7Wc6mq6zkQqdMOW0IN0577gplpK6k0dZWhsFfinPNeGXLkjKrhKWF5wYmRJLCSqdE6fkQPV18D6E9di6mfNd2oYHInMHXEyaE0qDKLqoytDEG5_NDgKvDKack7yvMzxXm1wpBP77oI-iajQt_rv8t8GvAtm02R9j5TZgIQ7TUXBKhhZFSGMCeMf4NYt2CUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918724468</pqid></control><display><type>article</type><title>A statistical distribution texton feature for synthetic aperture radar image classification</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>He, Chu ; Ye, Ya-ping ; Tian, Ling ; Yang, Guo-peng ; Chen, Dong</creator><creatorcontrib>He, Chu ; Ye, Ya-ping ; Tian, Ling ; Yang, Guo-peng ; Chen, Dong</creatorcontrib><description>We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1601051</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Classification ; Clustering ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Data analysis ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Fourier transforms ; Heuristic ; Image classification ; Instrumentation ; Labeling ; Networks ; Parameter estimation ; Probability distribution ; R&amp;D ; Radar imaging ; Random variables ; Remote sensing ; Research &amp; development ; Statistics ; Synthetic aperture radar ; Texture</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2017-10, Vol.18 (10), p.1614-1623</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</citedby><cites>FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</cites><orcidid>0000-0003-3662-5769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1601051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918724468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>He, Chu</creatorcontrib><creatorcontrib>Ye, Ya-ping</creatorcontrib><creatorcontrib>Tian, Ling</creatorcontrib><creatorcontrib>Yang, Guo-peng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><title>A statistical distribution texton feature for synthetic aperture radar image classification</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology &amp; Electronic Engineering</addtitle><description>We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.</description><subject>Classification</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data analysis</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Heuristic</subject><subject>Image classification</subject><subject>Instrumentation</subject><subject>Labeling</subject><subject>Networks</subject><subject>Parameter estimation</subject><subject>Probability distribution</subject><subject>R&amp;D</subject><subject>Radar imaging</subject><subject>Random variables</subject><subject>Remote sensing</subject><subject>Research &amp; development</subject><subject>Statistics</subject><subject>Synthetic aperture radar</subject><subject>Texture</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1PAjEUbIwmEuTovYnnxX7THgkBJSHxgicPm-5uC0twF9puIv_et4B68jSTl3kz7w1Cj5SMqeL0ebFcz-dACSWS3qABI0ZmhnFy-8OpFvdoFOOOEEIVNROjB-hjimOyqY6pLu0eV0BCXXSpbhuc3FcC8M6mLjjs24DjqUlbB1psDy6cx8FWNuD6024cLvc2xtqDVW_wgO683Uc3uuIQvS_m69lrtnp7Wc6mq6zkQqdMOW0IN0577gplpK6k0dZWhsFfinPNeGXLkjKrhKWF5wYmRJLCSqdE6fkQPV18D6E9di6mfNd2oYHInMHXEyaE0qDKLqoytDEG5_NDgKvDKack7yvMzxXm1wpBP77oI-iajQt_rv8t8GvAtm02R9j5TZgIQ7TUXBKhhZFSGMCeMf4NYt2CUA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>He, Chu</creator><creator>Ye, Ya-ping</creator><creator>Tian, Ling</creator><creator>Yang, Guo-peng</creator><creator>Chen, Dong</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3662-5769</orcidid></search><sort><creationdate>20171001</creationdate><title>A statistical distribution texton feature for synthetic aperture radar image classification</title><author>He, Chu ; Ye, Ya-ping ; Tian, Ling ; Yang, Guo-peng ; Chen, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data analysis</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Heuristic</topic><topic>Image classification</topic><topic>Instrumentation</topic><topic>Labeling</topic><topic>Networks</topic><topic>Parameter estimation</topic><topic>Probability distribution</topic><topic>R&amp;D</topic><topic>Radar imaging</topic><topic>Random variables</topic><topic>Remote sensing</topic><topic>Research &amp; development</topic><topic>Statistics</topic><topic>Synthetic aperture radar</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chu</creatorcontrib><creatorcontrib>Ye, Ya-ping</creatorcontrib><creatorcontrib>Tian, Ling</creatorcontrib><creatorcontrib>Yang, Guo-peng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Chu</au><au>Ye, Ya-ping</au><au>Tian, Ling</au><au>Yang, Guo-peng</au><au>Chen, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical distribution texton feature for synthetic aperture radar image classification</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology &amp; Electronic Engineering</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>18</volume><issue>10</issue><spage>1614</spage><epage>1623</epage><pages>1614-1623</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1601051</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3662-5769</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2017-10, Vol.18 (10), p.1614-1623
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2918724468
source SpringerLink (Online service); Alma/SFX Local Collection; ProQuest Central
subjects Classification
Clustering
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Electrical Engineering
Electronics and Microelectronics
Engineering
Fourier transforms
Heuristic
Image classification
Instrumentation
Labeling
Networks
Parameter estimation
Probability distribution
R&D
Radar imaging
Random variables
Remote sensing
Research & development
Statistics
Synthetic aperture radar
Texture
title A statistical distribution texton feature for synthetic aperture radar image classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20distribution%20texton%20feature%20for%20synthetic%20aperture%20radar%20image%20classification&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=He,%20Chu&rft.date=2017-10-01&rft.volume=18&rft.issue=10&rft.spage=1614&rft.epage=1623&rft.pages=1614-1623&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1601051&rft_dat=%3Cproquest_cross%3E2918724468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918724468&rft_id=info:pmid/&rft_cqvip_id=74908583504849554948484952&rfr_iscdi=true