A statistical distribution texton feature for synthetic aperture radar image classification
We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2017-10, Vol.18 (10), p.1614-1623 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1623 |
---|---|
container_issue | 10 |
container_start_page | 1614 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 18 |
creator | He, Chu Ye, Ya-ping Tian, Ling Yang, Guo-peng Chen, Dong |
description | We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature. |
doi_str_mv | 10.1631/FITEE.1601051 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918724468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>74908583504849554948484952</cqvip_id><sourcerecordid>2918724468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</originalsourceid><addsrcrecordid>eNp1UE1PAjEUbIwmEuTovYnnxX7THgkBJSHxgicPm-5uC0twF9puIv_et4B68jSTl3kz7w1Cj5SMqeL0ebFcz-dACSWS3qABI0ZmhnFy-8OpFvdoFOOOEEIVNROjB-hjimOyqY6pLu0eV0BCXXSpbhuc3FcC8M6mLjjs24DjqUlbB1psDy6cx8FWNuD6024cLvc2xtqDVW_wgO683Uc3uuIQvS_m69lrtnp7Wc6mq6zkQqdMOW0IN0577gplpK6k0dZWhsFfinPNeGXLkjKrhKWF5wYmRJLCSqdE6fkQPV18D6E9di6mfNd2oYHInMHXEyaE0qDKLqoytDEG5_NDgKvDKack7yvMzxXm1wpBP77oI-iajQt_rv8t8GvAtm02R9j5TZgIQ7TUXBKhhZFSGMCeMf4NYt2CUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918724468</pqid></control><display><type>article</type><title>A statistical distribution texton feature for synthetic aperture radar image classification</title><source>SpringerLink (Online service)</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>He, Chu ; Ye, Ya-ping ; Tian, Ling ; Yang, Guo-peng ; Chen, Dong</creator><creatorcontrib>He, Chu ; Ye, Ya-ping ; Tian, Ling ; Yang, Guo-peng ; Chen, Dong</creatorcontrib><description>We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1601051</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Classification ; Clustering ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Data analysis ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Fourier transforms ; Heuristic ; Image classification ; Instrumentation ; Labeling ; Networks ; Parameter estimation ; Probability distribution ; R&D ; Radar imaging ; Random variables ; Remote sensing ; Research & development ; Statistics ; Synthetic aperture radar ; Texture</subject><ispartof>Frontiers of information technology & electronic engineering, 2017-10, Vol.18 (10), p.1614-1623</ispartof><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</citedby><cites>FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</cites><orcidid>0000-0003-3662-5769</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1601051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918724468?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>He, Chu</creatorcontrib><creatorcontrib>Ye, Ya-ping</creatorcontrib><creatorcontrib>Tian, Ling</creatorcontrib><creatorcontrib>Yang, Guo-peng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><title>A statistical distribution texton feature for synthetic aperture radar image classification</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.</description><subject>Classification</subject><subject>Clustering</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data analysis</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Fourier transforms</subject><subject>Heuristic</subject><subject>Image classification</subject><subject>Instrumentation</subject><subject>Labeling</subject><subject>Networks</subject><subject>Parameter estimation</subject><subject>Probability distribution</subject><subject>R&D</subject><subject>Radar imaging</subject><subject>Random variables</subject><subject>Remote sensing</subject><subject>Research & development</subject><subject>Statistics</subject><subject>Synthetic aperture radar</subject><subject>Texture</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1PAjEUbIwmEuTovYnnxX7THgkBJSHxgicPm-5uC0twF9puIv_et4B68jSTl3kz7w1Cj5SMqeL0ebFcz-dACSWS3qABI0ZmhnFy-8OpFvdoFOOOEEIVNROjB-hjimOyqY6pLu0eV0BCXXSpbhuc3FcC8M6mLjjs24DjqUlbB1psDy6cx8FWNuD6024cLvc2xtqDVW_wgO683Uc3uuIQvS_m69lrtnp7Wc6mq6zkQqdMOW0IN0577gplpK6k0dZWhsFfinPNeGXLkjKrhKWF5wYmRJLCSqdE6fkQPV18D6E9di6mfNd2oYHInMHXEyaE0qDKLqoytDEG5_NDgKvDKack7yvMzxXm1wpBP77oI-iajQt_rv8t8GvAtm02R9j5TZgIQ7TUXBKhhZFSGMCeMf4NYt2CUA</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>He, Chu</creator><creator>Ye, Ya-ping</creator><creator>Tian, Ling</creator><creator>Yang, Guo-peng</creator><creator>Chen, Dong</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3662-5769</orcidid></search><sort><creationdate>20171001</creationdate><title>A statistical distribution texton feature for synthetic aperture radar image classification</title><author>He, Chu ; Ye, Ya-ping ; Tian, Ling ; Yang, Guo-peng ; Chen, Dong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6e89039e8f3eb6958d598aad92631633823dacc12a64a1bf39823050ba5e64cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data analysis</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Fourier transforms</topic><topic>Heuristic</topic><topic>Image classification</topic><topic>Instrumentation</topic><topic>Labeling</topic><topic>Networks</topic><topic>Parameter estimation</topic><topic>Probability distribution</topic><topic>R&D</topic><topic>Radar imaging</topic><topic>Random variables</topic><topic>Remote sensing</topic><topic>Research & development</topic><topic>Statistics</topic><topic>Synthetic aperture radar</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Chu</creatorcontrib><creatorcontrib>Ye, Ya-ping</creatorcontrib><creatorcontrib>Tian, Ling</creatorcontrib><creatorcontrib>Yang, Guo-peng</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Chu</au><au>Ye, Ya-ping</au><au>Tian, Ling</au><au>Yang, Guo-peng</au><au>Chen, Dong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A statistical distribution texton feature for synthetic aperture radar image classification</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2017-10-01</date><risdate>2017</risdate><volume>18</volume><issue>10</issue><spage>1614</spage><epage>1623</epage><pages>1614-1623</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>We propose a novel statistical distribution texton(s-texton) feature for synthetic aperture radar(SAR) image classification. Motivated by the traditional texton feature, the framework of texture analysis, and the importance of statistical distribution in SAR images, the s-texton feature is developed based on the idea that parameter estimation of the statistical distribution can replace the filtering operation in the traditional texture analysis of SAR images. In the process of extracting the s-texton feature, several strategies are adopted, including pre-processing, spatial gridding, parameter estimation, texton clustering, and histogram statistics. Experimental results on Terra SAR data demonstrate the effectiveness of the proposed s-texton feature.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1601051</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3662-5769</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2017-10, Vol.18 (10), p.1614-1623 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918724468 |
source | SpringerLink (Online service); Alma/SFX Local Collection; ProQuest Central |
subjects | Classification Clustering Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Data analysis Electrical Engineering Electronics and Microelectronics Engineering Fourier transforms Heuristic Image classification Instrumentation Labeling Networks Parameter estimation Probability distribution R&D Radar imaging Random variables Remote sensing Research & development Statistics Synthetic aperture radar Texture |
title | A statistical distribution texton feature for synthetic aperture radar image classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A27%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20statistical%20distribution%20texton%20feature%20for%20synthetic%20aperture%20radar%20image%20classification&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=He,%20Chu&rft.date=2017-10-01&rft.volume=18&rft.issue=10&rft.spage=1614&rft.epage=1623&rft.pages=1614-1623&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1601051&rft_dat=%3Cproquest_cross%3E2918724468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918724468&rft_id=info:pmid/&rft_cqvip_id=74908583504849554948484952&rfr_iscdi=true |