A microblog recommendation algorithm based on social tagging and a temporal interest evolution model

Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2015-07, Vol.16 (7), p.532-540
Hauptverfasser: Yuan, Zhen-ming, Huang, Chi, Sun, Xiao-yan, Li, Xing-xing, Xu, Dong-rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 7
container_start_page 532
container_title Frontiers of information technology & electronic engineering
container_volume 16
creator Yuan, Zhen-ming
Huang, Chi
Sun, Xiao-yan
Li, Xing-xing
Xu, Dong-rong
description Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.
doi_str_mv 10.1631/FITEE.1400368
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665329913</cqvip_id><sourcerecordid>2918723614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</originalsourceid><addsrcrecordid>eNp1kM9PwyAcxYnRxGXu6J3ouZMvUFqOy7LpkiVe5rmhhXZdWtigM_G_l_1QT16AfPN57315CD0CmYJg8LJcbRaLKXBCmMhv0IgSmSaSMnL784ac36NJCDtCCAiQmcxHSM9w31belZ1rsDeV63tjtRpaZ7HqGufbYdvjUgWjcRwFV7Wqw4NqmtY2WFmNFR5Mv3c-jls7GG_CgM2n645nj95p0z2gu1p1wUyu9xh9LBeb-Vuyfn9dzWfrpGIMhqQmSlJT5zzTIDLgQla0AkVSSFnGmCIi01pQCSWnZcYlpBVIw0-npBQ4G6Pni-_eu8MxLlLs3NHbGFlEVZ5RJs5UcqHit0Pwpi72vu2V_yqAFKcui3OXxbXLyE8vfIicbYz_c_1P8HQN2DrbHKLmN0GIlFEpgbFvWoCAKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723614</pqid></control><display><type>article</type><title>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yuan, Zhen-ming ; Huang, Chi ; Sun, Xiao-yan ; Li, Xing-xing ; Xu, Dong-rong</creator><creatorcontrib>Yuan, Zhen-ming ; Huang, Chi ; Sun, Xiao-yan ; Li, Xing-xing ; Xu, Dong-rong</creatorcontrib><description>Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1400368</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Algorithms ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Evolution ; Instrumentation ; Microblogs ; Networks ; Tags ; User satisfaction</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2015-07, Vol.16 (7), p.532-540</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</citedby><cites>FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1400368$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723614?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Yuan, Zhen-ming</creatorcontrib><creatorcontrib>Huang, Chi</creatorcontrib><creatorcontrib>Sun, Xiao-yan</creatorcontrib><creatorcontrib>Li, Xing-xing</creatorcontrib><creatorcontrib>Xu, Dong-rong</creatorcontrib><title>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Evolution</subject><subject>Instrumentation</subject><subject>Microblogs</subject><subject>Networks</subject><subject>Tags</subject><subject>User satisfaction</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9PwyAcxYnRxGXu6J3ouZMvUFqOy7LpkiVe5rmhhXZdWtigM_G_l_1QT16AfPN57315CD0CmYJg8LJcbRaLKXBCmMhv0IgSmSaSMnL784ac36NJCDtCCAiQmcxHSM9w31belZ1rsDeV63tjtRpaZ7HqGufbYdvjUgWjcRwFV7Wqw4NqmtY2WFmNFR5Mv3c-jls7GG_CgM2n645nj95p0z2gu1p1wUyu9xh9LBeb-Vuyfn9dzWfrpGIMhqQmSlJT5zzTIDLgQla0AkVSSFnGmCIi01pQCSWnZcYlpBVIw0-npBQ4G6Pni-_eu8MxLlLs3NHbGFlEVZ5RJs5UcqHit0Pwpi72vu2V_yqAFKcui3OXxbXLyE8vfIicbYz_c_1P8HQN2DrbHKLmN0GIlFEpgbFvWoCAKA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Yuan, Zhen-ming</creator><creator>Huang, Chi</creator><creator>Sun, Xiao-yan</creator><creator>Li, Xing-xing</creator><creator>Xu, Dong-rong</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150701</creationdate><title>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</title><author>Yuan, Zhen-ming ; Huang, Chi ; Sun, Xiao-yan ; Li, Xing-xing ; Xu, Dong-rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Evolution</topic><topic>Instrumentation</topic><topic>Microblogs</topic><topic>Networks</topic><topic>Tags</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Zhen-ming</creatorcontrib><creatorcontrib>Huang, Chi</creatorcontrib><creatorcontrib>Sun, Xiao-yan</creatorcontrib><creatorcontrib>Li, Xing-xing</creatorcontrib><creatorcontrib>Xu, Dong-rong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Zhen-ming</au><au>Huang, Chi</au><au>Sun, Xiao-yan</au><au>Li, Xing-xing</au><au>Xu, Dong-rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>16</volume><issue>7</issue><spage>532</spage><epage>540</epage><pages>532-540</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1400368</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2015-07, Vol.16 (7), p.532-540
issn 2095-9184
2095-9230
language eng
recordid cdi_proquest_journals_2918723614
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Electrical Engineering
Electronics and Microelectronics
Evolution
Instrumentation
Microblogs
Networks
Tags
User satisfaction
title A microblog recommendation algorithm based on social tagging and a temporal interest evolution model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microblog%20recommendation%20algorithm%20based%20on%20social%20tagging%20and%20a%20temporal%20interest%20evolution%20model&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Yuan,%20Zhen-ming&rft.date=2015-07-01&rft.volume=16&rft.issue=7&rft.spage=532&rft.epage=540&rft.pages=532-540&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1400368&rft_dat=%3Cproquest_cross%3E2918723614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723614&rft_id=info:pmid/&rft_cqvip_id=665329913&rfr_iscdi=true