A microblog recommendation algorithm based on social tagging and a temporal interest evolution model
Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepa...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2015-07, Vol.16 (7), p.532-540 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 540 |
---|---|
container_issue | 7 |
container_start_page | 532 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 16 |
creator | Yuan, Zhen-ming Huang, Chi Sun, Xiao-yan Li, Xing-xing Xu, Dong-rong |
description | Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred. |
doi_str_mv | 10.1631/FITEE.1400368 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665329913</cqvip_id><sourcerecordid>2918723614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</originalsourceid><addsrcrecordid>eNp1kM9PwyAcxYnRxGXu6J3ouZMvUFqOy7LpkiVe5rmhhXZdWtigM_G_l_1QT16AfPN57315CD0CmYJg8LJcbRaLKXBCmMhv0IgSmSaSMnL784ac36NJCDtCCAiQmcxHSM9w31belZ1rsDeV63tjtRpaZ7HqGufbYdvjUgWjcRwFV7Wqw4NqmtY2WFmNFR5Mv3c-jls7GG_CgM2n645nj95p0z2gu1p1wUyu9xh9LBeb-Vuyfn9dzWfrpGIMhqQmSlJT5zzTIDLgQla0AkVSSFnGmCIi01pQCSWnZcYlpBVIw0-npBQ4G6Pni-_eu8MxLlLs3NHbGFlEVZ5RJs5UcqHit0Pwpi72vu2V_yqAFKcui3OXxbXLyE8vfIicbYz_c_1P8HQN2DrbHKLmN0GIlFEpgbFvWoCAKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723614</pqid></control><display><type>article</type><title>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Yuan, Zhen-ming ; Huang, Chi ; Sun, Xiao-yan ; Li, Xing-xing ; Xu, Dong-rong</creator><creatorcontrib>Yuan, Zhen-ming ; Huang, Chi ; Sun, Xiao-yan ; Li, Xing-xing ; Xu, Dong-rong</creatorcontrib><description>Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.1400368</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Algorithms ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Evolution ; Instrumentation ; Microblogs ; Networks ; Tags ; User satisfaction</subject><ispartof>Frontiers of information technology & electronic engineering, 2015-07, Vol.16 (7), p.532-540</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</citedby><cites>FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589A/89589A.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/FITEE.1400368$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723614?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Yuan, Zhen-ming</creatorcontrib><creatorcontrib>Huang, Chi</creatorcontrib><creatorcontrib>Sun, Xiao-yan</creatorcontrib><creatorcontrib>Li, Xing-xing</creatorcontrib><creatorcontrib>Xu, Dong-rong</creatorcontrib><title>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Frontiers Inf Technol Electronic Eng</addtitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><description>Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.</description><subject>Algorithms</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Evolution</subject><subject>Instrumentation</subject><subject>Microblogs</subject><subject>Networks</subject><subject>Tags</subject><subject>User satisfaction</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9PwyAcxYnRxGXu6J3ouZMvUFqOy7LpkiVe5rmhhXZdWtigM_G_l_1QT16AfPN57315CD0CmYJg8LJcbRaLKXBCmMhv0IgSmSaSMnL784ac36NJCDtCCAiQmcxHSM9w31belZ1rsDeV63tjtRpaZ7HqGufbYdvjUgWjcRwFV7Wqw4NqmtY2WFmNFR5Mv3c-jls7GG_CgM2n645nj95p0z2gu1p1wUyu9xh9LBeb-Vuyfn9dzWfrpGIMhqQmSlJT5zzTIDLgQla0AkVSSFnGmCIi01pQCSWnZcYlpBVIw0-npBQ4G6Pni-_eu8MxLlLs3NHbGFlEVZ5RJs5UcqHit0Pwpi72vu2V_yqAFKcui3OXxbXLyE8vfIicbYz_c_1P8HQN2DrbHKLmN0GIlFEpgbFvWoCAKA</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Yuan, Zhen-ming</creator><creator>Huang, Chi</creator><creator>Sun, Xiao-yan</creator><creator>Li, Xing-xing</creator><creator>Xu, Dong-rong</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150701</creationdate><title>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</title><author>Yuan, Zhen-ming ; Huang, Chi ; Sun, Xiao-yan ; Li, Xing-xing ; Xu, Dong-rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-f0a92ef847d1671469c2c1a05153733a067dd6291b42b74915c19e45c19922143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Evolution</topic><topic>Instrumentation</topic><topic>Microblogs</topic><topic>Networks</topic><topic>Tags</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Zhen-ming</creatorcontrib><creatorcontrib>Huang, Chi</creatorcontrib><creatorcontrib>Sun, Xiao-yan</creatorcontrib><creatorcontrib>Li, Xing-xing</creatorcontrib><creatorcontrib>Xu, Dong-rong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Zhen-ming</au><au>Huang, Chi</au><au>Sun, Xiao-yan</au><au>Li, Xing-xing</au><au>Xu, Dong-rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A microblog recommendation algorithm based on social tagging and a temporal interest evolution model</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Frontiers Inf Technol Electronic Eng</stitle><addtitle>Frontiers of Information Technology & Electronic Engineering</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>16</volume><issue>7</issue><spage>532</spage><epage>540</epage><pages>532-540</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Personalized microblog recommendations face challenges of user cold-start problems and the interest evolution of topics. In this paper, we propose a collaborative filtering recommendation algorithm based on a temporal interest evolution model and social tag prediction. Three matrices are first prepared to model the relationship between users, tags, and microblogs. Then the scores of the tags for each microblog are optimized according to the interest evolution model of tags. In addition, to address the user cold-start problem, a social tag prediction algorithm based on community discovery and maximum tag voting is designed to extract candidate tags for users. Finally, the joint probability of a tag for each user is calculated by integrating the Bayes probability on the set of candidate tags, and the top n microblogs with the highest joint probabilities are recommended to the user. Experiments using datasets from the microblog of Sina Weibo showed that our algorithm achieved good recall and precision in terms of both overall and temporal performances. A questionnaire survey proved user satisfaction with recommendation results when the cold-start problem occurred.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.1400368</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2015-07, Vol.16 (7), p.532-540 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918723614 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Electrical Engineering Electronics and Microelectronics Evolution Instrumentation Microblogs Networks Tags User satisfaction |
title | A microblog recommendation algorithm based on social tagging and a temporal interest evolution model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A51%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20microblog%20recommendation%20algorithm%20based%20on%20social%20tagging%20and%20a%20temporal%20interest%20evolution%20model&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Yuan,%20Zhen-ming&rft.date=2015-07-01&rft.volume=16&rft.issue=7&rft.spage=532&rft.epage=540&rft.pages=532-540&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.1400368&rft_dat=%3Cproquest_cross%3E2918723614%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723614&rft_id=info:pmid/&rft_cqvip_id=665329913&rfr_iscdi=true |