An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar

In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the proced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2014-11, Vol.15 (11), p.1071-1085
Hauptverfasser: Guan, Xin, Zhong, Li-hua, Hu, Dong-hui, Ding, Chi-biao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1085
container_issue 11
container_start_page 1071
container_title Frontiers of information technology & electronic engineering
container_volume 15
creator Guan, Xin
Zhong, Li-hua
Hu, Dong-hui
Ding, Chi-biao
description In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.
doi_str_mv 10.1631/jzus.C1400074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918723545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</originalsourceid><addsrcrecordid>eNptkElPwzAQhS0EElXhyN0S5xQvcRIfq4pNqsQFJG6W44zbVK1T7BSx_HkmCsuFk8f2N2_mPUIuOJvxQvKrzcchzRY8Z4yV-RGZ8KrQGdfF8_FvrfgpOU9pgwiTSulCTsjnPFB46yE00NB97Byk1IYVTW4NO6C-i9R1a4gQetqGHlbR9m0XqA2I22h30EOkkPp2N37UNqESFnhHjYb6dovIoNkGbEH5V6DRNjaekRNvtwnOv88pebq5flzcZcuH2_vFfJk5yfI-04X2gjVQcxDOVbVivHalB-19nePalSuEtlaVlWgKZ53g0ts6t8Ljk624nJLLURf9vRxwV7PpDjHgSCM0r0ohVa6QykbKxS6lCN7sI5qK74YzM0RshojNT8TIz0Y-7Qd3EP9U_2_4Ag9Bgmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723545</pqid></control><display><type>article</type><title>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Guan, Xin ; Zhong, Li-hua ; Hu, Dong-hui ; Ding, Chi-biao</creator><creatorcontrib>Guan, Xin ; Zhong, Li-hua ; Hu, Dong-hui ; Ding, Chi-biao</creatorcontrib><description>In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1400074</identifier><language>eng</language><publisher>Heidelberg: Zhejiang University Press</publisher><subject>Algorithms ; Coherence ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Fast Fourier transformations ; Filtration ; Fourier transforms ; High speed ; Instrumentation ; Networks ; Parameter estimation ; Performance enhancement ; Target detection</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2014-11, Vol.15 (11), p.1071-1085</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</citedby><cites>FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C1400074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723545?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Zhong, Li-hua</creatorcontrib><creatorcontrib>Hu, Dong-hui</creatorcontrib><creatorcontrib>Ding, Chi-biao</creatorcontrib><title>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><description>In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Fast Fourier transformations</subject><subject>Filtration</subject><subject>Fourier transforms</subject><subject>High speed</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Parameter estimation</subject><subject>Performance enhancement</subject><subject>Target detection</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkElPwzAQhS0EElXhyN0S5xQvcRIfq4pNqsQFJG6W44zbVK1T7BSx_HkmCsuFk8f2N2_mPUIuOJvxQvKrzcchzRY8Z4yV-RGZ8KrQGdfF8_FvrfgpOU9pgwiTSulCTsjnPFB46yE00NB97Byk1IYVTW4NO6C-i9R1a4gQetqGHlbR9m0XqA2I22h30EOkkPp2N37UNqESFnhHjYb6dovIoNkGbEH5V6DRNjaekRNvtwnOv88pebq5flzcZcuH2_vFfJk5yfI-04X2gjVQcxDOVbVivHalB-19nePalSuEtlaVlWgKZ53g0ts6t8Ljk624nJLLURf9vRxwV7PpDjHgSCM0r0ohVa6QykbKxS6lCN7sI5qK74YzM0RshojNT8TIz0Y-7Qd3EP9U_2_4Ag9Bgmw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Guan, Xin</creator><creator>Zhong, Li-hua</creator><creator>Hu, Dong-hui</creator><creator>Ding, Chi-biao</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141101</creationdate><title>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</title><author>Guan, Xin ; Zhong, Li-hua ; Hu, Dong-hui ; Ding, Chi-biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Fast Fourier transformations</topic><topic>Filtration</topic><topic>Fourier transforms</topic><topic>High speed</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Parameter estimation</topic><topic>Performance enhancement</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Zhong, Li-hua</creatorcontrib><creatorcontrib>Hu, Dong-hui</creatorcontrib><creatorcontrib>Ding, Chi-biao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Xin</au><au>Zhong, Li-hua</au><au>Hu, Dong-hui</au><au>Ding, Chi-biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>15</volume><issue>11</issue><spage>1071</spage><epage>1085</epage><pages>1071-1085</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.</abstract><cop>Heidelberg</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.C1400074</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1951
ispartof Frontiers of information technology & electronic engineering, 2014-11, Vol.15 (11), p.1071-1085
issn 1869-1951
2095-9184
1869-196X
2095-9230
language eng
recordid cdi_proquest_journals_2918723545
source SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Coherence
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Electrical Engineering
Electronics and Microelectronics
Fast Fourier transformations
Filtration
Fourier transforms
High speed
Instrumentation
Networks
Parameter estimation
Performance enhancement
Target detection
title An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20processing%20scheme%20for%20coherent%20integration%20and%20parameter%20estimation%20based%20on%20matched%20filtering%20in%20passive%20radar&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Guan,%20Xin&rft.date=2014-11-01&rft.volume=15&rft.issue=11&rft.spage=1071&rft.epage=1085&rft.pages=1071-1085&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1400074&rft_dat=%3Cproquest_cross%3E2918723545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723545&rft_id=info:pmid/&rfr_iscdi=true