An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar
In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the proced...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2014-11, Vol.15 (11), p.1071-1085 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1085 |
---|---|
container_issue | 11 |
container_start_page | 1071 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 15 |
creator | Guan, Xin Zhong, Li-hua Hu, Dong-hui Ding, Chi-biao |
description | In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets. |
doi_str_mv | 10.1631/jzus.C1400074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918723545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918723545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</originalsourceid><addsrcrecordid>eNptkElPwzAQhS0EElXhyN0S5xQvcRIfq4pNqsQFJG6W44zbVK1T7BSx_HkmCsuFk8f2N2_mPUIuOJvxQvKrzcchzRY8Z4yV-RGZ8KrQGdfF8_FvrfgpOU9pgwiTSulCTsjnPFB46yE00NB97Byk1IYVTW4NO6C-i9R1a4gQetqGHlbR9m0XqA2I22h30EOkkPp2N37UNqESFnhHjYb6dovIoNkGbEH5V6DRNjaekRNvtwnOv88pebq5flzcZcuH2_vFfJk5yfI-04X2gjVQcxDOVbVivHalB-19nePalSuEtlaVlWgKZ53g0ts6t8Ljk624nJLLURf9vRxwV7PpDjHgSCM0r0ohVa6QykbKxS6lCN7sI5qK74YzM0RshojNT8TIz0Y-7Qd3EP9U_2_4Ag9Bgmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918723545</pqid></control><display><type>article</type><title>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Guan, Xin ; Zhong, Li-hua ; Hu, Dong-hui ; Ding, Chi-biao</creator><creatorcontrib>Guan, Xin ; Zhong, Li-hua ; Hu, Dong-hui ; Ding, Chi-biao</creatorcontrib><description>In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C1400074</identifier><language>eng</language><publisher>Heidelberg: Zhejiang University Press</publisher><subject>Algorithms ; Coherence ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Electrical Engineering ; Electronics and Microelectronics ; Fast Fourier transformations ; Filtration ; Fourier transforms ; High speed ; Instrumentation ; Networks ; Parameter estimation ; Performance enhancement ; Target detection</subject><ispartof>Frontiers of information technology & electronic engineering, 2014-11, Vol.15 (11), p.1071-1085</ispartof><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</citedby><cites>FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C1400074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918723545?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Zhong, Li-hua</creatorcontrib><creatorcontrib>Hu, Dong-hui</creatorcontrib><creatorcontrib>Ding, Chi-biao</creatorcontrib><title>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><description>In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.</description><subject>Algorithms</subject><subject>Coherence</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Fast Fourier transformations</subject><subject>Filtration</subject><subject>Fourier transforms</subject><subject>High speed</subject><subject>Instrumentation</subject><subject>Networks</subject><subject>Parameter estimation</subject><subject>Performance enhancement</subject><subject>Target detection</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkElPwzAQhS0EElXhyN0S5xQvcRIfq4pNqsQFJG6W44zbVK1T7BSx_HkmCsuFk8f2N2_mPUIuOJvxQvKrzcchzRY8Z4yV-RGZ8KrQGdfF8_FvrfgpOU9pgwiTSulCTsjnPFB46yE00NB97Byk1IYVTW4NO6C-i9R1a4gQetqGHlbR9m0XqA2I22h30EOkkPp2N37UNqESFnhHjYb6dovIoNkGbEH5V6DRNjaekRNvtwnOv88pebq5flzcZcuH2_vFfJk5yfI-04X2gjVQcxDOVbVivHalB-19nePalSuEtlaVlWgKZ53g0ts6t8Ljk624nJLLURf9vRxwV7PpDjHgSCM0r0ohVa6QykbKxS6lCN7sI5qK74YzM0RshojNT8TIz0Y-7Qd3EP9U_2_4Ag9Bgmw</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Guan, Xin</creator><creator>Zhong, Li-hua</creator><creator>Hu, Dong-hui</creator><creator>Ding, Chi-biao</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20141101</creationdate><title>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</title><author>Guan, Xin ; Zhong, Li-hua ; Hu, Dong-hui ; Ding, Chi-biao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-969f20deb1e2cc8b501bc7fe9ffb4ded8c629aa5782d6cac213fab4a2f578a813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Coherence</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Fast Fourier transformations</topic><topic>Filtration</topic><topic>Fourier transforms</topic><topic>High speed</topic><topic>Instrumentation</topic><topic>Networks</topic><topic>Parameter estimation</topic><topic>Performance enhancement</topic><topic>Target detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Xin</creatorcontrib><creatorcontrib>Zhong, Li-hua</creatorcontrib><creatorcontrib>Hu, Dong-hui</creatorcontrib><creatorcontrib>Ding, Chi-biao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Xin</au><au>Zhong, Li-hua</au><au>Hu, Dong-hui</au><au>Ding, Chi-biao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><date>2014-11-01</date><risdate>2014</risdate><volume>15</volume><issue>11</issue><spage>1071</spage><epage>1085</epage><pages>1071-1085</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>In passive radars, coherent integration is an essential method to achieve processing gain for target detection. The cross ambiguity function (CAF) and the method based on matched filtering are the most common approaches. The method based on matched filtering is an approximation to CAF and the procedure is: (1) divide the signal into snapshots; (2) perform matched filtering on each snapshot; (3) perform fast Fourier transform (FFT) across the snapshots. The matched filtering method is computationally affordable and can offer savings of an order of 1000 times in execution speed over that of CAF. However, matched filtering suffers from severe energy loss for high speed targets. In this paper we concentrate mainly on the matched filtering method and we use keystone transform to rectify range migration. Several factors affecting the performance of coherent integration are discussed based on the matched filtering method and keystone transform. Modified methods are introduced to improve the performance by analyzing the impacts of mismatching, precision of the keystone transform, and discretization. The modified discrete chirp Fourier transform (MDCFT) is adopted to rectify the Doppler expansion in a multi-target scenario. A novel velocity estimation method is proposed, and an extended processing scheme presented. Simulations show that the proposed algorithms improve the performance of matched filtering for high speed targets.</abstract><cop>Heidelberg</cop><pub>Zhejiang University Press</pub><doi>10.1631/jzus.C1400074</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2014-11, Vol.15 (11), p.1071-1085 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918723545 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Coherence Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Electrical Engineering Electronics and Microelectronics Fast Fourier transformations Filtration Fourier transforms High speed Instrumentation Networks Parameter estimation Performance enhancement Target detection |
title | An extended processing scheme for coherent integration and parameter estimation based on matched filtering in passive radar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A34%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20processing%20scheme%20for%20coherent%20integration%20and%20parameter%20estimation%20based%20on%20matched%20filtering%20in%20passive%20radar&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Guan,%20Xin&rft.date=2014-11-01&rft.volume=15&rft.issue=11&rft.spage=1071&rft.epage=1085&rft.pages=1071-1085&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C1400074&rft_dat=%3Cproquest_cross%3E2918723545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918723545&rft_id=info:pmid/&rfr_iscdi=true |