Studying pressure sores through illuminant invariant assessment of digital color images

Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering 2010-08, Vol.11 (8), p.598-606
Hauptverfasser: Moghimi, Sahar, Miran Baygi, Mohammad Hossein, Torkaman, Giti, Kabir, Ehsanollah, Mahloojifar, Ali, Armanfard, Narges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 606
container_issue 8
container_start_page 598
container_title Frontiers of information technology & electronic engineering
container_volume 11
creator Moghimi, Sahar
Miran Baygi, Mohammad Hossein
Torkaman, Giti
Kabir, Ehsanollah
Mahloojifar, Ali
Armanfard, Narges
description Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.
doi_str_mv 10.1631/jzus.C0910552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918722397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34668142</cqvip_id><sourcerecordid>2918722397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqP3oOet26STXZzlKJWKHhQ0VvI5mObut20ya5Q_3pTWvXkXObB_ObN8AC4RPkUMYJuVl9DnM5yjnJK8QkYoYrxDHH2fvqrKToHkxhXeSpCKWdkBN6e-0HvXNfATTAxDsHA6JOC_TL4oVlC17bD2nWy66HrPmVweyVjTPDaJOkt1K5xvWyh8q0P0K1lY-IFOLOyjWZy7GPwen_3Mptni6eHx9ntIlOEoD4jhbYFz61ENWe10VzWNZOYI46UIgprVWCGNa2oktpQbcsyzaxBmBBGa0LG4Prguwl-O5jYi5UfQpdOiuRSlRgTXiYqO1Aq-BiDsWIT0p9hJ1Au9vGJfXziJ77ETw98TFzXmPDn-t_C1fHA0nfNNu2IWqoP61ojSMFYhQpMvgEsaYBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722397</pqid></control><display><type>article</type><title>Studying pressure sores through illuminant invariant assessment of digital color images</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Moghimi, Sahar ; Miran Baygi, Mohammad Hossein ; Torkaman, Giti ; Kabir, Ehsanollah ; Mahloojifar, Ali ; Armanfard, Narges</creator><creatorcontrib>Moghimi, Sahar ; Miran Baygi, Mohammad Hossein ; Torkaman, Giti ; Kabir, Ehsanollah ; Mahloojifar, Ali ; Armanfard, Narges</creatorcontrib><description>Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C0910552</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Color imagery ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Digital imaging ; Electrical Engineering ; Electronics and Microelectronics ; Guinea pigs ; Instrumentation ; Invariants ; Networks ; Neural networks ; Pressure ulcers ; Segments ; Texture</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2010-08, Vol.11 (8), p.598-606</ispartof><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</citedby><cites>FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C0910552$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918722397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21390,27926,27927,33746,41490,42559,43807,51321,64387,64391,72471</link.rule.ids></links><search><creatorcontrib>Moghimi, Sahar</creatorcontrib><creatorcontrib>Miran Baygi, Mohammad Hossein</creatorcontrib><creatorcontrib>Torkaman, Giti</creatorcontrib><creatorcontrib>Kabir, Ehsanollah</creatorcontrib><creatorcontrib>Mahloojifar, Ali</creatorcontrib><creatorcontrib>Armanfard, Narges</creatorcontrib><title>Studying pressure sores through illuminant invariant assessment of digital color images</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.</description><subject>Color imagery</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Digital imaging</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Guinea pigs</subject><subject>Instrumentation</subject><subject>Invariants</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Pressure ulcers</subject><subject>Segments</subject><subject>Texture</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWGqP3oOet26STXZzlKJWKHhQ0VvI5mObut20ya5Q_3pTWvXkXObB_ObN8AC4RPkUMYJuVl9DnM5yjnJK8QkYoYrxDHH2fvqrKToHkxhXeSpCKWdkBN6e-0HvXNfATTAxDsHA6JOC_TL4oVlC17bD2nWy66HrPmVweyVjTPDaJOkt1K5xvWyh8q0P0K1lY-IFOLOyjWZy7GPwen_3Mptni6eHx9ntIlOEoD4jhbYFz61ENWe10VzWNZOYI46UIgprVWCGNa2oktpQbcsyzaxBmBBGa0LG4Prguwl-O5jYi5UfQpdOiuRSlRgTXiYqO1Aq-BiDsWIT0p9hJ1Au9vGJfXziJ77ETw98TFzXmPDn-t_C1fHA0nfNNu2IWqoP61ojSMFYhQpMvgEsaYBA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Moghimi, Sahar</creator><creator>Miran Baygi, Mohammad Hossein</creator><creator>Torkaman, Giti</creator><creator>Kabir, Ehsanollah</creator><creator>Mahloojifar, Ali</creator><creator>Armanfard, Narges</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20100801</creationdate><title>Studying pressure sores through illuminant invariant assessment of digital color images</title><author>Moghimi, Sahar ; Miran Baygi, Mohammad Hossein ; Torkaman, Giti ; Kabir, Ehsanollah ; Mahloojifar, Ali ; Armanfard, Narges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Color imagery</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Digital imaging</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Guinea pigs</topic><topic>Instrumentation</topic><topic>Invariants</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Pressure ulcers</topic><topic>Segments</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghimi, Sahar</creatorcontrib><creatorcontrib>Miran Baygi, Mohammad Hossein</creatorcontrib><creatorcontrib>Torkaman, Giti</creatorcontrib><creatorcontrib>Kabir, Ehsanollah</creatorcontrib><creatorcontrib>Mahloojifar, Ali</creatorcontrib><creatorcontrib>Armanfard, Narges</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghimi, Sahar</au><au>Miran Baygi, Mohammad Hossein</au><au>Torkaman, Giti</au><au>Kabir, Ehsanollah</au><au>Mahloojifar, Ali</au><au>Armanfard, Narges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying pressure sores through illuminant invariant assessment of digital color images</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>11</volume><issue>8</issue><spage>598</spage><epage>606</epage><pages>598-606</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C0910552</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1951
ispartof Frontiers of information technology & electronic engineering, 2010-08, Vol.11 (8), p.598-606
issn 1869-1951
2095-9184
1869-196X
2095-9230
language eng
recordid cdi_proquest_journals_2918722397
source SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Color imagery
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Digital imaging
Electrical Engineering
Electronics and Microelectronics
Guinea pigs
Instrumentation
Invariants
Networks
Neural networks
Pressure ulcers
Segments
Texture
title Studying pressure sores through illuminant invariant assessment of digital color images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20pressure%20sores%20through%20illuminant%20invariant%20assessment%20of%20digital%20color%20images&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Moghimi,%20Sahar&rft.date=2010-08-01&rft.volume=11&rft.issue=8&rft.spage=598&rft.epage=606&rft.pages=598-606&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C0910552&rft_dat=%3Cproquest_cross%3E2918722397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918722397&rft_id=info:pmid/&rft_cqvip_id=34668142&rfr_iscdi=true