Studying pressure sores through illuminant invariant assessment of digital color images
Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captur...
Gespeichert in:
Veröffentlicht in: | Frontiers of information technology & electronic engineering 2010-08, Vol.11 (8), p.598-606 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 606 |
---|---|
container_issue | 8 |
container_start_page | 598 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 11 |
creator | Moghimi, Sahar Miran Baygi, Mohammad Hossein Torkaman, Giti Kabir, Ehsanollah Mahloojifar, Ali Armanfard, Narges |
description | Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores. |
doi_str_mv | 10.1631/jzus.C0910552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918722397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34668142</cqvip_id><sourcerecordid>2918722397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGqP3oOet26STXZzlKJWKHhQ0VvI5mObut20ya5Q_3pTWvXkXObB_ObN8AC4RPkUMYJuVl9DnM5yjnJK8QkYoYrxDHH2fvqrKToHkxhXeSpCKWdkBN6e-0HvXNfATTAxDsHA6JOC_TL4oVlC17bD2nWy66HrPmVweyVjTPDaJOkt1K5xvWyh8q0P0K1lY-IFOLOyjWZy7GPwen_3Mptni6eHx9ntIlOEoD4jhbYFz61ENWe10VzWNZOYI46UIgprVWCGNa2oktpQbcsyzaxBmBBGa0LG4Prguwl-O5jYi5UfQpdOiuRSlRgTXiYqO1Aq-BiDsWIT0p9hJ1Au9vGJfXziJ77ETw98TFzXmPDn-t_C1fHA0nfNNu2IWqoP61ojSMFYhQpMvgEsaYBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918722397</pqid></control><display><type>article</type><title>Studying pressure sores through illuminant invariant assessment of digital color images</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Moghimi, Sahar ; Miran Baygi, Mohammad Hossein ; Torkaman, Giti ; Kabir, Ehsanollah ; Mahloojifar, Ali ; Armanfard, Narges</creator><creatorcontrib>Moghimi, Sahar ; Miran Baygi, Mohammad Hossein ; Torkaman, Giti ; Kabir, Ehsanollah ; Mahloojifar, Ali ; Armanfard, Narges</creatorcontrib><description>Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.</description><identifier>ISSN: 1869-1951</identifier><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 1869-196X</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/jzus.C0910552</identifier><language>eng</language><publisher>Heidelberg: SP Zhejiang University Press</publisher><subject>Color imagery ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Digital imaging ; Electrical Engineering ; Electronics and Microelectronics ; Guinea pigs ; Instrumentation ; Invariants ; Networks ; Neural networks ; Pressure ulcers ; Segments ; Texture</subject><ispartof>Frontiers of information technology & electronic engineering, 2010-08, Vol.11 (8), p.598-606</ispartof><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010</rights><rights>Journal of Zhejiang University Science? Editorial Office and Springer-Verlag Berlin Heidelberg 2010.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</citedby><cites>FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/89589X/89589X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1631/jzus.C0910552$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918722397?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21390,27926,27927,33746,41490,42559,43807,51321,64387,64391,72471</link.rule.ids></links><search><creatorcontrib>Moghimi, Sahar</creatorcontrib><creatorcontrib>Miran Baygi, Mohammad Hossein</creatorcontrib><creatorcontrib>Torkaman, Giti</creatorcontrib><creatorcontrib>Kabir, Ehsanollah</creatorcontrib><creatorcontrib>Mahloojifar, Ali</creatorcontrib><creatorcontrib>Armanfard, Narges</creatorcontrib><title>Studying pressure sores through illuminant invariant assessment of digital color images</title><title>Frontiers of information technology & electronic engineering</title><addtitle>J. Zhejiang Univ. - Sci. C</addtitle><addtitle>Journal of zhejiang university science</addtitle><description>Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.</description><subject>Color imagery</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Digital imaging</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Guinea pigs</subject><subject>Instrumentation</subject><subject>Invariants</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Pressure ulcers</subject><subject>Segments</subject><subject>Texture</subject><issn>1869-1951</issn><issn>2095-9184</issn><issn>1869-196X</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWGqP3oOet26STXZzlKJWKHhQ0VvI5mObut20ya5Q_3pTWvXkXObB_ObN8AC4RPkUMYJuVl9DnM5yjnJK8QkYoYrxDHH2fvqrKToHkxhXeSpCKWdkBN6e-0HvXNfATTAxDsHA6JOC_TL4oVlC17bD2nWy66HrPmVweyVjTPDaJOkt1K5xvWyh8q0P0K1lY-IFOLOyjWZy7GPwen_3Mptni6eHx9ntIlOEoD4jhbYFz61ENWe10VzWNZOYI46UIgprVWCGNa2oktpQbcsyzaxBmBBGa0LG4Prguwl-O5jYi5UfQpdOiuRSlRgTXiYqO1Aq-BiDsWIT0p9hJ1Au9vGJfXziJ77ETw98TFzXmPDn-t_C1fHA0nfNNu2IWqoP61ojSMFYhQpMvgEsaYBA</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Moghimi, Sahar</creator><creator>Miran Baygi, Mohammad Hossein</creator><creator>Torkaman, Giti</creator><creator>Kabir, Ehsanollah</creator><creator>Mahloojifar, Ali</creator><creator>Armanfard, Narges</creator><general>SP Zhejiang University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20100801</creationdate><title>Studying pressure sores through illuminant invariant assessment of digital color images</title><author>Moghimi, Sahar ; Miran Baygi, Mohammad Hossein ; Torkaman, Giti ; Kabir, Ehsanollah ; Mahloojifar, Ali ; Armanfard, Narges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-34df490fa1b96bed9abb6a29191cc3c2dc4262d585cade5df77919fe123365b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Color imagery</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Digital imaging</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Guinea pigs</topic><topic>Instrumentation</topic><topic>Invariants</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Pressure ulcers</topic><topic>Segments</topic><topic>Texture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moghimi, Sahar</creatorcontrib><creatorcontrib>Miran Baygi, Mohammad Hossein</creatorcontrib><creatorcontrib>Torkaman, Giti</creatorcontrib><creatorcontrib>Kabir, Ehsanollah</creatorcontrib><creatorcontrib>Mahloojifar, Ali</creatorcontrib><creatorcontrib>Armanfard, Narges</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moghimi, Sahar</au><au>Miran Baygi, Mohammad Hossein</au><au>Torkaman, Giti</au><au>Kabir, Ehsanollah</au><au>Mahloojifar, Ali</au><au>Armanfard, Narges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Studying pressure sores through illuminant invariant assessment of digital color images</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>J. Zhejiang Univ. - Sci. C</stitle><addtitle>Journal of zhejiang university science</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>11</volume><issue>8</issue><spage>598</spage><epage>606</epage><pages>598-606</pages><issn>1869-1951</issn><issn>2095-9184</issn><eissn>1869-196X</eissn><eissn>2095-9230</eissn><abstract>Methods for pressure sore monitoring remain both a clinical and research challenge. Improved methodologies could assist physicians in developing prompt and effective pressure sore interventions. In this paper a technique is introduced for the assessment of pressure sores in guinea pigs, using captured color images. Sores were artificially induced, utilizing a system particularly developed for this purpose. Digital images were obtained from the suspicious region in days 3 and 7 post-pressure sore generation. Different segments of the color images were divided and labeled into three classes, based on their severity status. For quantitative analysis, a color based texture model, which is invariant against monotonic changes in illumination, is proposed. The texture model has been developed based on the local binary pattern operator. Tissue segments were classified, using the texture model and its features as inputs to a combination of neural networks. Our method is capable of discriminating tissue segments in different stages of pressure sore generation, and therefore can be a feasible tool for the early assessment of pressure sores.</abstract><cop>Heidelberg</cop><pub>SP Zhejiang University Press</pub><doi>10.1631/jzus.C0910552</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1951 |
ispartof | Frontiers of information technology & electronic engineering, 2010-08, Vol.11 (8), p.598-606 |
issn | 1869-1951 2095-9184 1869-196X 2095-9230 |
language | eng |
recordid | cdi_proquest_journals_2918722397 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Color imagery Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Digital imaging Electrical Engineering Electronics and Microelectronics Guinea pigs Instrumentation Invariants Networks Neural networks Pressure ulcers Segments Texture |
title | Studying pressure sores through illuminant invariant assessment of digital color images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A20%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Studying%20pressure%20sores%20through%20illuminant%20invariant%20assessment%20of%20digital%20color%20images&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Moghimi,%20Sahar&rft.date=2010-08-01&rft.volume=11&rft.issue=8&rft.spage=598&rft.epage=606&rft.pages=598-606&rft.issn=1869-1951&rft.eissn=1869-196X&rft_id=info:doi/10.1631/jzus.C0910552&rft_dat=%3Cproquest_cross%3E2918722397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918722397&rft_id=info:pmid/&rft_cqvip_id=34668142&rfr_iscdi=true |