Experience report: investigating bug fixes in machine learning frameworks/libraries

Machine learning (ML) techniques and algorithms have been successfully and widely used in various areas including software engineering tasks. Like other software projects, bugs are also common in ML projects and libraries. In order to more deeply understand the features related to bug fixing in ML p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2021-12, Vol.15 (6), p.156212, Article 156212
Hauptverfasser: SUN, Xiaobing, ZHOU, Tianchi, WANG, Rongcun, DUAN, Yucong, BO, Lili, CHANG, Jianming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 156212
container_title Frontiers of Computer Science
container_volume 15
creator SUN, Xiaobing
ZHOU, Tianchi
WANG, Rongcun
DUAN, Yucong
BO, Lili
CHANG, Jianming
description Machine learning (ML) techniques and algorithms have been successfully and widely used in various areas including software engineering tasks. Like other software projects, bugs are also common in ML projects and libraries. In order to more deeply understand the features related to bug fixing in ML projects, we conduct an empirical study with 939 bugs from five ML projects by manually examining the bug categories, fixing patterns, fixing scale, fixing duration, and types of maintenance. The results show that (1) there are commonly seven types of bugs in ML programs; (2) twelve fixing patterns are typically used to fix the bugs in ML programs; (3) 68.80% of the patches belong to micro-scale-fix and small-scale-fix; (4) 66.77% of the bugs in ML programs can be fixed within one month; (5) 45.90% of the bug fixes belong to corrective activity from the perspective of software maintenance. Moreover, we perform a questionnaire survey and send them to developers or users of ML projects to validate the results in our empirical study. The results of our empirical study are basically consistent with the feedback from developers. The findings from the empirical study provide useful guidance and insights for developers and users to effectively detect and fix bugs in MLprojects.
doi_str_mv 10.1007/s11704-020-9441-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918721692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918721692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-cc71f9b09778b0504f93d52822ae619284f8849622b3d7e32e29c8a9a336fd83</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYD-BWiXNZ4n4l3NA0PiQkDuwepa3TZWxtcToY_55MRXDbyZb9Pq-tl7FrwW8F58XcC1HwNObAY5WmIhZnbAJcZTFAkp__9SAv2cz7DedBCVkGMGFvy0OP5LCtMCLsOxruItd-oh9cYwbXNlG5byLrDujDPNqZau1ajLZoqD1uLZkdfnX07udbV5IJVv6KXViz9Tj7rVO2eliuFk_xy-vj8-L-Ja6SPBviqiqEVSVXRSFLnvHUqqTOQAIYzIUCmVopU5UDlEldYAIIqpJGmSTJbS2TKbsZbXvqPvbhY73p9tSGixqUkAWIXEFQiVFVUec9odU9uZ2hby24Pqanx_R0yEQf09MiMDAyPmjbBunf-RQkR2jtmjUS1j2h99pS1w4O6RT6A5vog8o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918721692</pqid></control><display><type>article</type><title>Experience report: investigating bug fixes in machine learning frameworks/libraries</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>SUN, Xiaobing ; ZHOU, Tianchi ; WANG, Rongcun ; DUAN, Yucong ; BO, Lili ; CHANG, Jianming</creator><creatorcontrib>SUN, Xiaobing ; ZHOU, Tianchi ; WANG, Rongcun ; DUAN, Yucong ; BO, Lili ; CHANG, Jianming</creatorcontrib><description>Machine learning (ML) techniques and algorithms have been successfully and widely used in various areas including software engineering tasks. Like other software projects, bugs are also common in ML projects and libraries. In order to more deeply understand the features related to bug fixing in ML projects, we conduct an empirical study with 939 bugs from five ML projects by manually examining the bug categories, fixing patterns, fixing scale, fixing duration, and types of maintenance. The results show that (1) there are commonly seven types of bugs in ML programs; (2) twelve fixing patterns are typically used to fix the bugs in ML programs; (3) 68.80% of the patches belong to micro-scale-fix and small-scale-fix; (4) 66.77% of the bugs in ML programs can be fixed within one month; (5) 45.90% of the bug fixes belong to corrective activity from the perspective of software maintenance. Moreover, we perform a questionnaire survey and send them to developers or users of ML projects to validate the results in our empirical study. The results of our empirical study are basically consistent with the feedback from developers. The findings from the empirical study provide useful guidance and insights for developers and users to effectively detect and fix bugs in MLprojects.</description><identifier>ISSN: 2095-2228</identifier><identifier>EISSN: 2095-2236</identifier><identifier>DOI: 10.1007/s11704-020-9441-1</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; bug fixing ; Computer Science ; Documentation ; empirical study ; Engineering research ; Fixing ; Knowledge management ; Libraries ; Localization ; Machine learning ; machine learning project ; Maintenance ; questionnaire survey ; Questionnaires ; Research Article ; Software engineering ; Software upgrading</subject><ispartof>Frontiers of Computer Science, 2021-12, Vol.15 (6), p.156212, Article 156212</ispartof><rights>Copyright reserved, 2021, Higher Education Press</rights><rights>Higher Education Press 2021</rights><rights>Higher Education Press 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-cc71f9b09778b0504f93d52822ae619284f8849622b3d7e32e29c8a9a336fd83</citedby><cites>FETCH-LOGICAL-c365t-cc71f9b09778b0504f93d52822ae619284f8849622b3d7e32e29c8a9a336fd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11704-020-9441-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918721692?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>SUN, Xiaobing</creatorcontrib><creatorcontrib>ZHOU, Tianchi</creatorcontrib><creatorcontrib>WANG, Rongcun</creatorcontrib><creatorcontrib>DUAN, Yucong</creatorcontrib><creatorcontrib>BO, Lili</creatorcontrib><creatorcontrib>CHANG, Jianming</creatorcontrib><title>Experience report: investigating bug fixes in machine learning frameworks/libraries</title><title>Frontiers of Computer Science</title><addtitle>Front. Comput. Sci</addtitle><description>Machine learning (ML) techniques and algorithms have been successfully and widely used in various areas including software engineering tasks. Like other software projects, bugs are also common in ML projects and libraries. In order to more deeply understand the features related to bug fixing in ML projects, we conduct an empirical study with 939 bugs from five ML projects by manually examining the bug categories, fixing patterns, fixing scale, fixing duration, and types of maintenance. The results show that (1) there are commonly seven types of bugs in ML programs; (2) twelve fixing patterns are typically used to fix the bugs in ML programs; (3) 68.80% of the patches belong to micro-scale-fix and small-scale-fix; (4) 66.77% of the bugs in ML programs can be fixed within one month; (5) 45.90% of the bug fixes belong to corrective activity from the perspective of software maintenance. Moreover, we perform a questionnaire survey and send them to developers or users of ML projects to validate the results in our empirical study. The results of our empirical study are basically consistent with the feedback from developers. The findings from the empirical study provide useful guidance and insights for developers and users to effectively detect and fix bugs in MLprojects.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>bug fixing</subject><subject>Computer Science</subject><subject>Documentation</subject><subject>empirical study</subject><subject>Engineering research</subject><subject>Fixing</subject><subject>Knowledge management</subject><subject>Libraries</subject><subject>Localization</subject><subject>Machine learning</subject><subject>machine learning project</subject><subject>Maintenance</subject><subject>questionnaire survey</subject><subject>Questionnaires</subject><subject>Research Article</subject><subject>Software engineering</subject><subject>Software upgrading</subject><issn>2095-2228</issn><issn>2095-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1PwzAMhiMEEtPYD-BWiXNZ4n4l3NA0PiQkDuwepa3TZWxtcToY_55MRXDbyZb9Pq-tl7FrwW8F58XcC1HwNObAY5WmIhZnbAJcZTFAkp__9SAv2cz7DedBCVkGMGFvy0OP5LCtMCLsOxruItd-oh9cYwbXNlG5byLrDujDPNqZau1ajLZoqD1uLZkdfnX07udbV5IJVv6KXViz9Tj7rVO2eliuFk_xy-vj8-L-Ja6SPBviqiqEVSVXRSFLnvHUqqTOQAIYzIUCmVopU5UDlEldYAIIqpJGmSTJbS2TKbsZbXvqPvbhY73p9tSGixqUkAWIXEFQiVFVUec9odU9uZ2hby24Pqanx_R0yEQf09MiMDAyPmjbBunf-RQkR2jtmjUS1j2h99pS1w4O6RT6A5vog8o</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>SUN, Xiaobing</creator><creator>ZHOU, Tianchi</creator><creator>WANG, Rongcun</creator><creator>DUAN, Yucong</creator><creator>BO, Lili</creator><creator>CHANG, Jianming</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20211201</creationdate><title>Experience report: investigating bug fixes in machine learning frameworks/libraries</title><author>SUN, Xiaobing ; ZHOU, Tianchi ; WANG, Rongcun ; DUAN, Yucong ; BO, Lili ; CHANG, Jianming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-cc71f9b09778b0504f93d52822ae619284f8849622b3d7e32e29c8a9a336fd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>bug fixing</topic><topic>Computer Science</topic><topic>Documentation</topic><topic>empirical study</topic><topic>Engineering research</topic><topic>Fixing</topic><topic>Knowledge management</topic><topic>Libraries</topic><topic>Localization</topic><topic>Machine learning</topic><topic>machine learning project</topic><topic>Maintenance</topic><topic>questionnaire survey</topic><topic>Questionnaires</topic><topic>Research Article</topic><topic>Software engineering</topic><topic>Software upgrading</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SUN, Xiaobing</creatorcontrib><creatorcontrib>ZHOU, Tianchi</creatorcontrib><creatorcontrib>WANG, Rongcun</creatorcontrib><creatorcontrib>DUAN, Yucong</creatorcontrib><creatorcontrib>BO, Lili</creatorcontrib><creatorcontrib>CHANG, Jianming</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Frontiers of Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SUN, Xiaobing</au><au>ZHOU, Tianchi</au><au>WANG, Rongcun</au><au>DUAN, Yucong</au><au>BO, Lili</au><au>CHANG, Jianming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experience report: investigating bug fixes in machine learning frameworks/libraries</atitle><jtitle>Frontiers of Computer Science</jtitle><stitle>Front. Comput. Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>156212</spage><pages>156212-</pages><artnum>156212</artnum><issn>2095-2228</issn><eissn>2095-2236</eissn><abstract>Machine learning (ML) techniques and algorithms have been successfully and widely used in various areas including software engineering tasks. Like other software projects, bugs are also common in ML projects and libraries. In order to more deeply understand the features related to bug fixing in ML projects, we conduct an empirical study with 939 bugs from five ML projects by manually examining the bug categories, fixing patterns, fixing scale, fixing duration, and types of maintenance. The results show that (1) there are commonly seven types of bugs in ML programs; (2) twelve fixing patterns are typically used to fix the bugs in ML programs; (3) 68.80% of the patches belong to micro-scale-fix and small-scale-fix; (4) 66.77% of the bugs in ML programs can be fixed within one month; (5) 45.90% of the bug fixes belong to corrective activity from the perspective of software maintenance. Moreover, we perform a questionnaire survey and send them to developers or users of ML projects to validate the results in our empirical study. The results of our empirical study are basically consistent with the feedback from developers. The findings from the empirical study provide useful guidance and insights for developers and users to effectively detect and fix bugs in MLprojects.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11704-020-9441-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-2228
ispartof Frontiers of Computer Science, 2021-12, Vol.15 (6), p.156212, Article 156212
issn 2095-2228
2095-2236
language eng
recordid cdi_proquest_journals_2918721692
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Algorithms
Artificial intelligence
Automation
bug fixing
Computer Science
Documentation
empirical study
Engineering research
Fixing
Knowledge management
Libraries
Localization
Machine learning
machine learning project
Maintenance
questionnaire survey
Questionnaires
Research Article
Software engineering
Software upgrading
title Experience report: investigating bug fixes in machine learning frameworks/libraries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experience%20report:%20investigating%20bug%20fixes%20in%20machine%20learning%20frameworks/libraries&rft.jtitle=Frontiers%20of%20Computer%20Science&rft.au=SUN,%20Xiaobing&rft.date=2021-12-01&rft.volume=15&rft.issue=6&rft.spage=156212&rft.pages=156212-&rft.artnum=156212&rft.issn=2095-2228&rft.eissn=2095-2236&rft_id=info:doi/10.1007/s11704-020-9441-1&rft_dat=%3Cproquest_cross%3E2918721692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918721692&rft_id=info:pmid/&rfr_iscdi=true