Boosting imbalanced data learning with Wiener process oversampling

Learning from imbalanced data is a challenging task in a wide range of applications, which attracts significant research efforts from machine learning and data mining community. As a natural approach to this issue, oversampling balances the training samples through replicating existing samples or sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2017-10, Vol.11 (5), p.836-851
Hauptverfasser: LI, Qian, LI, Gang, NIU, Wenjia, CAO, Yanan, CHANG, Liang, TAN, Jianlong, GUO, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!