Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic

A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L 3 -valued propositional logic, a multisequent is a triple Δ|Θ|Γ, which is true under an assignment if either some formula in Δ has truth-value t, or some formula in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2021-06, Vol.15 (3), p.153401, Article 153401
Hauptverfasser: Cao, Cungen, Hu, Lanxi, Sui, Yuefei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 153401
container_title Frontiers of Computer Science
container_volume 15
creator Cao, Cungen
Hu, Lanxi
Sui, Yuefei
description A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L 3 -valued propositional logic, a multisequent is a triple Δ|Θ|Γ, which is true under an assignment if either some formula in Δ has truth-value t, or some formula in Θ has truth-value m, or some formula in Γ has truth-value f. Correspondingly there is a sound and complete Gentzen deduction system G for multisequents which is monotonic. Dually, a co-multisequent is a triple Δ: Θ: Γ, which is valid if there is an assignment v in which each formula in Δ has truth-value ≠ t, each formula in Θ has truth-value ≠ m, and each formula in Γ has truth-value ≠ f. Correspondingly there is a sound and complete Gentzen deduction system G − for co-multisequents which is nonmonotonic.
doi_str_mv 10.1007/s11704-020-9076-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918721637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918721637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-f2946eb1d935bfbeea2c73ed7adaf0f290af2b08063465bfb08dd6cf3835c03c3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWLQ_wF3AdfTmpvNaSvEFFTfqNmTyKFOmSU1mhPrrTRmpK1f3cu93DodDyBWHGw5Q3SbOK1gwQGANVCXDEzJDaAqGKMrT4471OZmntAHIJBYF4ox8vAQfhuA7TZU31Ae_PR7W1g_f1lNjzaiHLnia9mmw20RdiHQl2JfqR2voLoZdSN2BUD3tw7rTl-TMqT7Z-e-8IO8P92_LJ7Z6fXxe3q2Y5rVA5rBZlLblphFF61prFepKWFMpoxzkLyiHLdRQikV5IKA2ptRO1KLQILS4INeTb87wOdo0yE0YY46RJDa8rpCXosoUnygdQ0rROrmL3VbFveQgDw3KqUGZe5GHBiVmDU6alFm_tvHP-X_RD38MdMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918721637</pqid></control><display><type>article</type><title>Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Cao, Cungen ; Hu, Lanxi ; Sui, Yuefei</creator><creatorcontrib>Cao, Cungen ; Hu, Lanxi ; Sui, Yuefei</creatorcontrib><description>A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L 3 -valued propositional logic, a multisequent is a triple Δ|Θ|Γ, which is true under an assignment if either some formula in Δ has truth-value t, or some formula in Θ has truth-value m, or some formula in Γ has truth-value f. Correspondingly there is a sound and complete Gentzen deduction system G for multisequents which is monotonic. Dually, a co-multisequent is a triple Δ: Θ: Γ, which is valid if there is an assignment v in which each formula in Δ has truth-value ≠ t, each formula in Θ has truth-value ≠ m, and each formula in Γ has truth-value ≠ f. Correspondingly there is a sound and complete Gentzen deduction system G − for co-multisequents which is nonmonotonic.</description><identifier>ISSN: 2095-2228</identifier><identifier>EISSN: 2095-2236</identifier><identifier>DOI: 10.1007/s11704-020-9076-2</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Computer Science ; Logic ; Research Article ; Semantics ; Variables</subject><ispartof>Frontiers of Computer Science, 2021-06, Vol.15 (3), p.153401, Article 153401</ispartof><rights>Higher Education Press 2020</rights><rights>Higher Education Press 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-f2946eb1d935bfbeea2c73ed7adaf0f290af2b08063465bfb08dd6cf3835c03c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11704-020-9076-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918721637?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Cao, Cungen</creatorcontrib><creatorcontrib>Hu, Lanxi</creatorcontrib><creatorcontrib>Sui, Yuefei</creatorcontrib><title>Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic</title><title>Frontiers of Computer Science</title><addtitle>Front. Comput. Sci</addtitle><description>A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L 3 -valued propositional logic, a multisequent is a triple Δ|Θ|Γ, which is true under an assignment if either some formula in Δ has truth-value t, or some formula in Θ has truth-value m, or some formula in Γ has truth-value f. Correspondingly there is a sound and complete Gentzen deduction system G for multisequents which is monotonic. Dually, a co-multisequent is a triple Δ: Θ: Γ, which is valid if there is an assignment v in which each formula in Δ has truth-value ≠ t, each formula in Θ has truth-value ≠ m, and each formula in Γ has truth-value ≠ f. Correspondingly there is a sound and complete Gentzen deduction system G − for co-multisequents which is nonmonotonic.</description><subject>Computer Science</subject><subject>Logic</subject><subject>Research Article</subject><subject>Semantics</subject><subject>Variables</subject><issn>2095-2228</issn><issn>2095-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWLQ_wF3AdfTmpvNaSvEFFTfqNmTyKFOmSU1mhPrrTRmpK1f3cu93DodDyBWHGw5Q3SbOK1gwQGANVCXDEzJDaAqGKMrT4471OZmntAHIJBYF4ox8vAQfhuA7TZU31Ae_PR7W1g_f1lNjzaiHLnia9mmw20RdiHQl2JfqR2voLoZdSN2BUD3tw7rTl-TMqT7Z-e-8IO8P92_LJ7Z6fXxe3q2Y5rVA5rBZlLblphFF61prFepKWFMpoxzkLyiHLdRQikV5IKA2ptRO1KLQILS4INeTb87wOdo0yE0YY46RJDa8rpCXosoUnygdQ0rROrmL3VbFveQgDw3KqUGZe5GHBiVmDU6alFm_tvHP-X_RD38MdMQ</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cao, Cungen</creator><creator>Hu, Lanxi</creator><creator>Sui, Yuefei</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20210601</creationdate><title>Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic</title><author>Cao, Cungen ; Hu, Lanxi ; Sui, Yuefei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-f2946eb1d935bfbeea2c73ed7adaf0f290af2b08063465bfb08dd6cf3835c03c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Logic</topic><topic>Research Article</topic><topic>Semantics</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Cungen</creatorcontrib><creatorcontrib>Hu, Lanxi</creatorcontrib><creatorcontrib>Sui, Yuefei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Frontiers of Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Cungen</au><au>Hu, Lanxi</au><au>Sui, Yuefei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic</atitle><jtitle>Frontiers of Computer Science</jtitle><stitle>Front. Comput. Sci</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>15</volume><issue>3</issue><spage>153401</spage><pages>153401-</pages><artnum>153401</artnum><issn>2095-2228</issn><eissn>2095-2236</eissn><abstract>A sequent is a pair (Γ, Δ), which is true under an assignment if either some formula in Γ is false, or some formula in Δ is true. In L 3 -valued propositional logic, a multisequent is a triple Δ|Θ|Γ, which is true under an assignment if either some formula in Δ has truth-value t, or some formula in Θ has truth-value m, or some formula in Γ has truth-value f. Correspondingly there is a sound and complete Gentzen deduction system G for multisequents which is monotonic. Dually, a co-multisequent is a triple Δ: Θ: Γ, which is valid if there is an assignment v in which each formula in Δ has truth-value ≠ t, each formula in Θ has truth-value ≠ m, and each formula in Γ has truth-value ≠ f. Correspondingly there is a sound and complete Gentzen deduction system G − for co-multisequents which is nonmonotonic.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11704-020-9076-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 2095-2228
ispartof Frontiers of Computer Science, 2021-06, Vol.15 (3), p.153401, Article 153401
issn 2095-2228
2095-2236
language eng
recordid cdi_proquest_journals_2918721637
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Computer Science
Logic
Research Article
Semantics
Variables
title Monotonic and nonmonotonic gentzen deduction systems for L3-valued propositional logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A39%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monotonic%20and%20nonmonotonic%20gentzen%20deduction%20systems%20for%20L3-valued%20propositional%20logic&rft.jtitle=Frontiers%20of%20Computer%20Science&rft.au=Cao,%20Cungen&rft.date=2021-06-01&rft.volume=15&rft.issue=3&rft.spage=153401&rft.pages=153401-&rft.artnum=153401&rft.issn=2095-2228&rft.eissn=2095-2236&rft_id=info:doi/10.1007/s11704-020-9076-2&rft_dat=%3Cproquest_cross%3E2918721637%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918721637&rft_id=info:pmid/&rfr_iscdi=true