Learnware: on the future of machine learning

Current machine learning techniques have achieved great success; however, there are many deficiencies. First, to train a strong model, a large amount of training examples are required, whereas collecting the data, particularly data with labels, is expensive or even difficult in many real tasks. Seco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2016-08, Vol.10 (4), p.589-590
1. Verfasser: ZHOU, Zhi-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 590
container_issue 4
container_start_page 589
container_title Frontiers of Computer Science
container_volume 10
creator ZHOU, Zhi-Hua
description Current machine learning techniques have achieved great success; however, there are many deficiencies. First, to train a strong model, a large amount of training examples are required, whereas collecting the data, particularly data with labels, is expensive or even difficult in many real tasks. Second, once a model has been trained, if environment changes, which often happens in real tasks, the model can hardly perform well or even become useless. Third,
doi_str_mv 10.1007/s11704-016-6906-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918720132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669659428</cqvip_id><sourcerecordid>2918720132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-860fce60c87ba6c5182b4f73a70937544642f4b48418f8e6abcbd6d238ed4f013</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EElXpAdhFsE4Zjx3HWaKKl1SJDaytPMZJqtZp7VSIq3AW7sQVSBVUdl3NLL7vn9HP2DWHOQdI7wLnKcgYuIpVBioWZ2yCkCUxolDnxx31JZuFsAIABEwSxAmbLyn37iP39PP9FXUu6huK7L7fe4o6G23ysmkdResD1br6il3YfB1o9jen7P3x4W3xHC9fn14W98u4FBn2sVZgS1JQ6rTIVZlwjYW0qchTyESaSKkkWllILbm2mlRelEWlKhSaKmmBiym7HXO3vtvtKfRm1e29G04azLhOcWBwoPhIlb4LwZM1W99ucv9pOJhDM2ZsxgzNmEMzRgwOjk4YWFeT_08-JelRatq6IU_V1lMIxvrO9S350-rN349N5-rdcPL4pFKZSjKJWvwCG--Cdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918720132</pqid></control><display><type>article</type><title>Learnware: on the future of machine learning</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>ZHOU, Zhi-Hua</creator><creatorcontrib>ZHOU, Zhi-Hua</creatorcontrib><description>Current machine learning techniques have achieved great success; however, there are many deficiencies. First, to train a strong model, a large amount of training examples are required, whereas collecting the data, particularly data with labels, is expensive or even difficult in many real tasks. Second, once a model has been trained, if environment changes, which often happens in real tasks, the model can hardly perform well or even become useless. Third,</description><identifier>ISSN: 2095-2228</identifier><identifier>EISSN: 2095-2236</identifier><identifier>DOI: 10.1007/s11704-016-6906-3</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Computer Science ; Machine learning ; Perspective</subject><ispartof>Frontiers of Computer Science, 2016-08, Vol.10 (4), p.589-590</ispartof><rights>Copyright reserved, 2016, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-860fce60c87ba6c5182b4f73a70937544642f4b48418f8e6abcbd6d238ed4f013</citedby><cites>FETCH-LOGICAL-c392t-860fce60c87ba6c5182b4f73a70937544642f4b48418f8e6abcbd6d238ed4f013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71018X/71018X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11704-016-6906-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918720132?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,41493,42562,43810,51324,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>ZHOU, Zhi-Hua</creatorcontrib><title>Learnware: on the future of machine learning</title><title>Frontiers of Computer Science</title><addtitle>Front. Comput. Sci</addtitle><addtitle>Frontiers of Computer Science in China</addtitle><description>Current machine learning techniques have achieved great success; however, there are many deficiencies. First, to train a strong model, a large amount of training examples are required, whereas collecting the data, particularly data with labels, is expensive or even difficult in many real tasks. Second, once a model has been trained, if environment changes, which often happens in real tasks, the model can hardly perform well or even become useless. Third,</description><subject>Computer Science</subject><subject>Machine learning</subject><subject>Perspective</subject><issn>2095-2228</issn><issn>2095-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtOwzAQhi0EElXpAdhFsE4Zjx3HWaKKl1SJDaytPMZJqtZp7VSIq3AW7sQVSBVUdl3NLL7vn9HP2DWHOQdI7wLnKcgYuIpVBioWZ2yCkCUxolDnxx31JZuFsAIABEwSxAmbLyn37iP39PP9FXUu6huK7L7fe4o6G23ysmkdResD1br6il3YfB1o9jen7P3x4W3xHC9fn14W98u4FBn2sVZgS1JQ6rTIVZlwjYW0qchTyESaSKkkWllILbm2mlRelEWlKhSaKmmBiym7HXO3vtvtKfRm1e29G04azLhOcWBwoPhIlb4LwZM1W99ucv9pOJhDM2ZsxgzNmEMzRgwOjk4YWFeT_08-JelRatq6IU_V1lMIxvrO9S350-rN349N5-rdcPL4pFKZSjKJWvwCG--Cdw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>ZHOU, Zhi-Hua</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20160801</creationdate><title>Learnware: on the future of machine learning</title><author>ZHOU, Zhi-Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-860fce60c87ba6c5182b4f73a70937544642f4b48418f8e6abcbd6d238ed4f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Machine learning</topic><topic>Perspective</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHOU, Zhi-Hua</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Frontiers of Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHOU, Zhi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learnware: on the future of machine learning</atitle><jtitle>Frontiers of Computer Science</jtitle><stitle>Front. Comput. Sci</stitle><addtitle>Frontiers of Computer Science in China</addtitle><date>2016-08-01</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>589</spage><epage>590</epage><pages>589-590</pages><issn>2095-2228</issn><eissn>2095-2236</eissn><abstract>Current machine learning techniques have achieved great success; however, there are many deficiencies. First, to train a strong model, a large amount of training examples are required, whereas collecting the data, particularly data with labels, is expensive or even difficult in many real tasks. Second, once a model has been trained, if environment changes, which often happens in real tasks, the model can hardly perform well or even become useless. Third,</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11704-016-6906-3</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2228
ispartof Frontiers of Computer Science, 2016-08, Vol.10 (4), p.589-590
issn 2095-2228
2095-2236
language eng
recordid cdi_proquest_journals_2918720132
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Computer Science
Machine learning
Perspective
title Learnware: on the future of machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T08%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learnware%EF%BC%9A%20on%20the%20future%20of%20machine%20learning&rft.jtitle=Frontiers%20of%20Computer%20Science&rft.au=ZHOU,%20Zhi-Hua&rft.date=2016-08-01&rft.volume=10&rft.issue=4&rft.spage=589&rft.epage=590&rft.pages=589-590&rft.issn=2095-2228&rft.eissn=2095-2236&rft_id=info:doi/10.1007/s11704-016-6906-3&rft_dat=%3Cproquest_cross%3E2918720132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918720132&rft_id=info:pmid/&rft_cqvip_id=669659428&rfr_iscdi=true