A precise approach to tracking dim-small targets using spectral fingerprint features

A precise method for accurately tracking dim- small targets, based on spectral fingerprint is proposed where traditional full color tracking seems impossible. A fingerprint model is presented to adequately extract spectral features. By creating a multidimensional feature space and extending the limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Computer Science 2012-10, Vol.6 (5), p.527-536
Hauptverfasser: SHENG, Hao, LI, Chao, OUYANG, Yuanxin, XIONG, Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 5
container_start_page 527
container_title Frontiers of Computer Science
container_volume 6
creator SHENG, Hao
LI, Chao
OUYANG, Yuanxin
XIONG, Zhang
description A precise method for accurately tracking dim- small targets, based on spectral fingerprint is proposed where traditional full color tracking seems impossible. A fingerprint model is presented to adequately extract spectral features. By creating a multidimensional feature space and extending the limited RGB information to the hyperspectral information, the improved precise tracking model based on a nonparamet- ric kernel density estimator is built using the probability his- togram of spectral features. A layered particle filter algorithm for spectral tracking is presented to avoid the object jumping abruptly. Finally, experiments are conducted that show that the tracking algorithm with spectral fingerprint features is ac- curate, fast, and robust. It meets the needs of dim-small target tracking adequately.
doi_str_mv 10.1007/s11704-012-1106-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918719302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>43682866</cqvip_id><sourcerecordid>2918719302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-89e79643f0de6324f77a1466fb63d7ba0845ec1b591a1b2df9f817080e53dfb73</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEuXxA7gZcQ547cROjlXFS6rEpZwtJ1knKW2S2s6Bf4-jFLj15Idmdme-KLoD-giUyicHIGkSU2AxABUxO4sWICSPZSLE-e-dp_QyunJuS6lgTNBFtFmSwWLZOiR6GGyvy4b4nniry6-2q0nV7mO317sd8drW6B0Z3fTvBiyDaEdMeKEdbNt5YlD70aK7iS6M3jm8PZ7X0efL82b1Fq8_Xt9Xy3Vc8hx8nOUoc5FwQysUnCVGSg0hrikEr2ShaZakWEKR5qChYJXJTRZaZhRTXplC8uvoYZ4bgh9GdF5t-9F2YaViOWQSck5ZUMGsKm3vnEWjQtq9tt8KqJrgqRmeCvDUBE9NHjZ73NQsFPyffMqUzaamrRu0WAWyzilj-863aE9b748Zm76rD2HlX8iEi4xlQvAfI9uPOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918719302</pqid></control><display><type>article</type><title>A precise approach to tracking dim-small targets using spectral fingerprint features</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>SHENG, Hao ; LI, Chao ; OUYANG, Yuanxin ; XIONG, Zhang</creator><creatorcontrib>SHENG, Hao ; LI, Chao ; OUYANG, Yuanxin ; XIONG, Zhang</creatorcontrib><description>A precise method for accurately tracking dim- small targets, based on spectral fingerprint is proposed where traditional full color tracking seems impossible. A fingerprint model is presented to adequately extract spectral features. By creating a multidimensional feature space and extending the limited RGB information to the hyperspectral information, the improved precise tracking model based on a nonparamet- ric kernel density estimator is built using the probability his- togram of spectral features. A layered particle filter algorithm for spectral tracking is presented to avoid the object jumping abruptly. Finally, experiments are conducted that show that the tracking algorithm with spectral fingerprint features is ac- curate, fast, and robust. It meets the needs of dim-small target tracking adequately.</description><identifier>ISSN: 1673-7350</identifier><identifier>ISSN: 2095-2228</identifier><identifier>EISSN: 1673-7466</identifier><identifier>EISSN: 2095-2236</identifier><identifier>DOI: 10.1007/s11704-012-1106-2</identifier><language>eng</language><publisher>Heidelberg: Higher Education Press</publisher><subject>Algorithms ; Computer Science ; dim-small target ; Fingerprints ; LPF algorithm for spectral tracking ; precise tracking ; Research Article ; spectral fingerprint features ; Tracking ; 光谱信息 ; 光谱特征 ; 指纹特征 ; 核密度估计 ; 特征空间 ; 粒子滤波算法 ; 跟踪模型 ; 跟踪算法</subject><ispartof>Frontiers of Computer Science, 2012-10, Vol.6 (5), p.527-536</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2012</rights><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-89e79643f0de6324f77a1466fb63d7ba0845ec1b591a1b2df9f817080e53dfb73</citedby><cites>FETCH-LOGICAL-c391t-89e79643f0de6324f77a1466fb63d7ba0845ec1b591a1b2df9f817080e53dfb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71018X/71018X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11704-012-1106-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918719302?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>SHENG, Hao</creatorcontrib><creatorcontrib>LI, Chao</creatorcontrib><creatorcontrib>OUYANG, Yuanxin</creatorcontrib><creatorcontrib>XIONG, Zhang</creatorcontrib><title>A precise approach to tracking dim-small targets using spectral fingerprint features</title><title>Frontiers of Computer Science</title><addtitle>Front Comput Sci</addtitle><addtitle>Front. Comput. Sci</addtitle><addtitle>Frontiers of Computer Science in China</addtitle><description>A precise method for accurately tracking dim- small targets, based on spectral fingerprint is proposed where traditional full color tracking seems impossible. A fingerprint model is presented to adequately extract spectral features. By creating a multidimensional feature space and extending the limited RGB information to the hyperspectral information, the improved precise tracking model based on a nonparamet- ric kernel density estimator is built using the probability his- togram of spectral features. A layered particle filter algorithm for spectral tracking is presented to avoid the object jumping abruptly. Finally, experiments are conducted that show that the tracking algorithm with spectral fingerprint features is ac- curate, fast, and robust. It meets the needs of dim-small target tracking adequately.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>dim-small target</subject><subject>Fingerprints</subject><subject>LPF algorithm for spectral tracking</subject><subject>precise tracking</subject><subject>Research Article</subject><subject>spectral fingerprint features</subject><subject>Tracking</subject><subject>光谱信息</subject><subject>光谱特征</subject><subject>指纹特征</subject><subject>核密度估计</subject><subject>特征空间</subject><subject>粒子滤波算法</subject><subject>跟踪模型</subject><subject>跟踪算法</subject><issn>1673-7350</issn><issn>2095-2228</issn><issn>1673-7466</issn><issn>2095-2236</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhCMEEuXxA7gZcQ547cROjlXFS6rEpZwtJ1knKW2S2s6Bf4-jFLj15Idmdme-KLoD-giUyicHIGkSU2AxABUxO4sWICSPZSLE-e-dp_QyunJuS6lgTNBFtFmSwWLZOiR6GGyvy4b4nniry6-2q0nV7mO317sd8drW6B0Z3fTvBiyDaEdMeKEdbNt5YlD70aK7iS6M3jm8PZ7X0efL82b1Fq8_Xt9Xy3Vc8hx8nOUoc5FwQysUnCVGSg0hrikEr2ShaZakWEKR5qChYJXJTRZaZhRTXplC8uvoYZ4bgh9GdF5t-9F2YaViOWQSck5ZUMGsKm3vnEWjQtq9tt8KqJrgqRmeCvDUBE9NHjZ73NQsFPyffMqUzaamrRu0WAWyzilj-863aE9b748Zm76rD2HlX8iEi4xlQvAfI9uPOw</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>SHENG, Hao</creator><creator>LI, Chao</creator><creator>OUYANG, Yuanxin</creator><creator>XIONG, Zhang</creator><general>Higher Education Press</general><general>SP Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20121001</creationdate><title>A precise approach to tracking dim-small targets using spectral fingerprint features</title><author>SHENG, Hao ; LI, Chao ; OUYANG, Yuanxin ; XIONG, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-89e79643f0de6324f77a1466fb63d7ba0845ec1b591a1b2df9f817080e53dfb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>dim-small target</topic><topic>Fingerprints</topic><topic>LPF algorithm for spectral tracking</topic><topic>precise tracking</topic><topic>Research Article</topic><topic>spectral fingerprint features</topic><topic>Tracking</topic><topic>光谱信息</topic><topic>光谱特征</topic><topic>指纹特征</topic><topic>核密度估计</topic><topic>特征空间</topic><topic>粒子滤波算法</topic><topic>跟踪模型</topic><topic>跟踪算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHENG, Hao</creatorcontrib><creatorcontrib>LI, Chao</creatorcontrib><creatorcontrib>OUYANG, Yuanxin</creatorcontrib><creatorcontrib>XIONG, Zhang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Frontiers of Computer Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHENG, Hao</au><au>LI, Chao</au><au>OUYANG, Yuanxin</au><au>XIONG, Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A precise approach to tracking dim-small targets using spectral fingerprint features</atitle><jtitle>Frontiers of Computer Science</jtitle><stitle>Front Comput Sci</stitle><stitle>Front. Comput. Sci</stitle><addtitle>Frontiers of Computer Science in China</addtitle><date>2012-10-01</date><risdate>2012</risdate><volume>6</volume><issue>5</issue><spage>527</spage><epage>536</epage><pages>527-536</pages><issn>1673-7350</issn><issn>2095-2228</issn><eissn>1673-7466</eissn><eissn>2095-2236</eissn><abstract>A precise method for accurately tracking dim- small targets, based on spectral fingerprint is proposed where traditional full color tracking seems impossible. A fingerprint model is presented to adequately extract spectral features. By creating a multidimensional feature space and extending the limited RGB information to the hyperspectral information, the improved precise tracking model based on a nonparamet- ric kernel density estimator is built using the probability his- togram of spectral features. A layered particle filter algorithm for spectral tracking is presented to avoid the object jumping abruptly. Finally, experiments are conducted that show that the tracking algorithm with spectral fingerprint features is ac- curate, fast, and robust. It meets the needs of dim-small target tracking adequately.</abstract><cop>Heidelberg</cop><pub>Higher Education Press</pub><doi>10.1007/s11704-012-1106-2</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1673-7350
ispartof Frontiers of Computer Science, 2012-10, Vol.6 (5), p.527-536
issn 1673-7350
2095-2228
1673-7466
2095-2236
language eng
recordid cdi_proquest_journals_2918719302
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Computer Science
dim-small target
Fingerprints
LPF algorithm for spectral tracking
precise tracking
Research Article
spectral fingerprint features
Tracking
光谱信息
光谱特征
指纹特征
核密度估计
特征空间
粒子滤波算法
跟踪模型
跟踪算法
title A precise approach to tracking dim-small targets using spectral fingerprint features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A48%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20precise%20approach%20to%20tracking%20dim-small%20targets%20using%20spectral%20fingerprint%20features&rft.jtitle=Frontiers%20of%20Computer%20Science&rft.au=SHENG,%20Hao&rft.date=2012-10-01&rft.volume=6&rft.issue=5&rft.spage=527&rft.epage=536&rft.pages=527-536&rft.issn=1673-7350&rft.eissn=1673-7466&rft_id=info:doi/10.1007/s11704-012-1106-2&rft_dat=%3Cproquest_cross%3E2918719302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918719302&rft_id=info:pmid/&rft_cqvip_id=43682866&rfr_iscdi=true