Short term wind speed prediction using multiple kernel pseudo inverse neural network
An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number...
Gespeichert in:
Veröffentlicht in: | International journal of automation and computing 2018-02, Vol.15 (1), p.66-83 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 83 |
---|---|
container_issue | 1 |
container_start_page | 66 |
container_title | International journal of automation and computing |
container_volume | 15 |
creator | Mishra, S. P. Dash, P. K. |
description | An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours. |
doi_str_mv | 10.1007/s11633-017-1086-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918684270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918684270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-b71f028de88142be62245f5c7073ccf24bdc2333d160df1552733f044c7a00c73</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqXwANwscTbs2k7sHlHFn4TEgXK2UnsNadMk2AkVb0-qcpo5jGY0H2PXCLcIYO4yYqmUADQCwZbCnLAZmgKFLSScTl6bUli05Tm7yHkDUBq50DO2ev_q0sAHSju-r9vAc08UeJ8o1H6ou5aPuW4_-W5shrpviG8ptdTwPtMYOl63P5Qy8ZbGVDWTDPsubS_ZWayaTFf_Omcfjw-r5bN4fXt6Wd6_Cq-0HsTaYARpA1mLWq6plFIXsfAGjPI-Sr0OXiqlApYQIhaFNEpF0NqbCsAbNWc3x94-dd8j5cFtujG106STi-mr1dLAlMJjyqcu50TR9aneVenXIbgDPHeE5yZ47gDPGfUHc8hiYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918684270</pqid></control><display><type>article</type><title>Short term wind speed prediction using multiple kernel pseudo inverse neural network</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Mishra, S. P. ; Dash, P. K.</creator><creatorcontrib>Mishra, S. P. ; Dash, P. K.</creatorcontrib><description>An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-017-1086-7</identifier><language>eng</language><publisher>Beijing: Springer Nature B.V</publisher><subject>Accuracy ; Adaptive algorithms ; Heuristic methods ; Kernel functions ; Mathematical models ; Neural networks ; Prediction models ; Radial basis function ; Wind power ; Wind speed</subject><ispartof>International journal of automation and computing, 2018-02, Vol.15 (1), p.66-83</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-b71f028de88142be62245f5c7073ccf24bdc2333d160df1552733f044c7a00c73</citedby><cites>FETCH-LOGICAL-c344t-b71f028de88142be62245f5c7073ccf24bdc2333d160df1552733f044c7a00c73</cites><orcidid>0000-0002-8950-7136 ; 0000-0003-1222-8056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918684270?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,43810,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Mishra, S. P.</creatorcontrib><creatorcontrib>Dash, P. K.</creatorcontrib><title>Short term wind speed prediction using multiple kernel pseudo inverse neural network</title><title>International journal of automation and computing</title><description>An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Heuristic methods</subject><subject>Kernel functions</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Prediction models</subject><subject>Radial basis function</subject><subject>Wind power</subject><subject>Wind speed</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkM1OwzAQhC0EEqXwANwscTbs2k7sHlHFn4TEgXK2UnsNadMk2AkVb0-qcpo5jGY0H2PXCLcIYO4yYqmUADQCwZbCnLAZmgKFLSScTl6bUli05Tm7yHkDUBq50DO2ev_q0sAHSju-r9vAc08UeJ8o1H6ou5aPuW4_-W5shrpviG8ptdTwPtMYOl63P5Qy8ZbGVDWTDPsubS_ZWayaTFf_Omcfjw-r5bN4fXt6Wd6_Cq-0HsTaYARpA1mLWq6plFIXsfAGjPI-Sr0OXiqlApYQIhaFNEpF0NqbCsAbNWc3x94-dd8j5cFtujG106STi-mr1dLAlMJjyqcu50TR9aneVenXIbgDPHeE5yZ47gDPGfUHc8hiYg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Mishra, S. P.</creator><creator>Dash, P. K.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8950-7136</orcidid><orcidid>https://orcid.org/0000-0003-1222-8056</orcidid></search><sort><creationdate>20180201</creationdate><title>Short term wind speed prediction using multiple kernel pseudo inverse neural network</title><author>Mishra, S. P. ; Dash, P. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-b71f028de88142be62245f5c7073ccf24bdc2333d160df1552733f044c7a00c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Heuristic methods</topic><topic>Kernel functions</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Prediction models</topic><topic>Radial basis function</topic><topic>Wind power</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, S. P.</creatorcontrib><creatorcontrib>Dash, P. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, S. P.</au><au>Dash, P. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short term wind speed prediction using multiple kernel pseudo inverse neural network</atitle><jtitle>International journal of automation and computing</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>15</volume><issue>1</issue><spage>66</spage><epage>83</epage><pages>66-83</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>An accurate short-term wind speed prediction algorithm based on the efficient kernel ridge pseudo inverse neural network (KRPINN) variants is proposed in this paper. The use of nonlinear kernel functions in pseudo inverse neural networks eliminates the trial and error approach of choosing the number of hidden layer neurons and their activation functions. The robustness of the proposed method has been validated in comparison with other models such as pseudo inverse radial basis function (PIRBF) and Legendre tanh activation function based neural network, i.e., PILNNT, whose input weights to the hidden layer weights are optimized using an adaptive firefly algorithm, i.e., FFA. However, since the individual kernel functions based KRPINN may not be able to produce accurate forecasts under chaotically varying wind speed conditions, a linear combination of individual kernel functions is used to build the multi kernel ridge pseudo inverse neural network (MK-RPINN) for providing improved forecasting accuracy, generalization, and stability of the wind speed prediction model. Several case studies have been presented to validate the accuracy of the short-term wind speed prediction models using the real world wind speed data from a wind farm in the Wyoming State of USA over time horizons varying from 10 minutes to 5 hours.</abstract><cop>Beijing</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11633-017-1086-7</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-8950-7136</orcidid><orcidid>https://orcid.org/0000-0003-1222-8056</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-8186 |
ispartof | International journal of automation and computing, 2018-02, Vol.15 (1), p.66-83 |
issn | 1476-8186 2153-182X 1751-8520 2153-1838 |
language | eng |
recordid | cdi_proquest_journals_2918684270 |
source | ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Adaptive algorithms Heuristic methods Kernel functions Mathematical models Neural networks Prediction models Radial basis function Wind power Wind speed |
title | Short term wind speed prediction using multiple kernel pseudo inverse neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20term%20wind%20speed%20prediction%20using%20multiple%20kernel%20pseudo%20inverse%20neural%20network&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Mishra,%20S.%20P.&rft.date=2018-02-01&rft.volume=15&rft.issue=1&rft.spage=66&rft.epage=83&rft.pages=66-83&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-017-1086-7&rft_dat=%3Cproquest_cross%3E2918684270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918684270&rft_id=info:pmid/&rfr_iscdi=true |