Molecular Dynamics Simulation of Persistent Slip Bands Formation in Nickel-base Superalloys

Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2017-02, Vol.14 (1), p.68-79
Hauptverfasser: Huang, Jian-Feng, Wang, Zhong-Lai, Yang, Er-Fu, McGlinchey, Don, Luo, Yuan-Xin, Li, Yun, Chen, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 68
container_title International journal of automation and computing
container_volume 14
creator Huang, Jian-Feng
Wang, Zhong-Lai
Yang, Er-Fu
McGlinchey, Don
Luo, Yuan-Xin
Li, Yun
Chen, Yi
description Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensile- tensile loadings. Five MD models with different microstructure (pure 5/ phase and γ/γ' phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 0 1][1 2 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role.
doi_str_mv 10.1007/s11633-016-1035-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918683765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671276879</cqvip_id><sourcerecordid>2918683765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a646cf1ecdaec5ee648bb2a776d59d6c0400097e84a0201e2dd825c180642e3d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEEqXwANwsOBtsJ7GdIxQKSOVHKpw4WK6zKSlJnNqJ1L49rlLBjdOuVt_MaCeKzim5ooSIa08pj2NMKMeUxCneHEQjKlKKZcrIYdgTwbGkkh9HJ96vCOGCZcko-ny2FZi-0g7dbRtdl8ajeVmHQ1faBtkCvYHzpe-g6dC8Klt0q5vco6l19YCUDXopzTdUeKE9oHnfgtNVZbf-NDoqdOXhbD_H0cf0_n3yiGevD0-Tmxk2seQd1jzhpqBgcg0mBeCJXCyYFoLnaZZzQxJCSCZAJpowQoHluWSpoZLwhEGcx-PocvBtnV334Du1sr1rQqRiWXhZxoKngaIDZZz13kGhWlfW2m0VJWrXoRo6VKFDtetQbYKGDRof2GYJ7s_5P9HFPujLNst10P0mcUGZ4FJk8Q9HfoC-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918683765</pqid></control><display><type>article</type><title>Molecular Dynamics Simulation of Persistent Slip Bands Formation in Nickel-base Superalloys</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Huang, Jian-Feng ; Wang, Zhong-Lai ; Yang, Er-Fu ; McGlinchey, Don ; Luo, Yuan-Xin ; Li, Yun ; Chen, Yi</creator><creatorcontrib>Huang, Jian-Feng ; Wang, Zhong-Lai ; Yang, Er-Fu ; McGlinchey, Don ; Luo, Yuan-Xin ; Li, Yun ; Chen, Yi</creatorcontrib><description>Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensile- tensile loadings. Five MD models with different microstructure (pure 5/ phase and γ/γ' phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 0 1][1 2 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-016-1035-x</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>CAE) and Design ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Crack initiation ; Edge dislocations ; Embedded atom method ; Engineering ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; Gamma phase ; Grain orientation ; Mechatronics ; Microstructure ; Molecular dynamics ; Nickel base alloys ; Research Article ; Robotics ; Simulation ; Superalloys ; 仿真结果 ; 光合细菌 ; 分子动力学模拟 ; 嵌入原子模型 ; 微观结构 ; 滑移带 ; 疲劳裂纹萌生 ; 镍基高温合金</subject><ispartof>International journal of automation and computing, 2017-02, Vol.14 (1), p.68-79</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a646cf1ecdaec5ee648bb2a776d59d6c0400097e84a0201e2dd825c180642e3d3</citedby><cites>FETCH-LOGICAL-c386t-a646cf1ecdaec5ee648bb2a776d59d6c0400097e84a0201e2dd825c180642e3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88433X/88433X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918683765?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Huang, Jian-Feng</creatorcontrib><creatorcontrib>Wang, Zhong-Lai</creatorcontrib><creatorcontrib>Yang, Er-Fu</creatorcontrib><creatorcontrib>McGlinchey, Don</creatorcontrib><creatorcontrib>Luo, Yuan-Xin</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><title>Molecular Dynamics Simulation of Persistent Slip Bands Formation in Nickel-base Superalloys</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><addtitle>International Journal of Automation and computing</addtitle><description>Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensile- tensile loadings. Five MD models with different microstructure (pure 5/ phase and γ/γ' phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 0 1][1 2 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role.</description><subject>CAE) and Design</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Crack initiation</subject><subject>Edge dislocations</subject><subject>Embedded atom method</subject><subject>Engineering</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Gamma phase</subject><subject>Grain orientation</subject><subject>Mechatronics</subject><subject>Microstructure</subject><subject>Molecular dynamics</subject><subject>Nickel base alloys</subject><subject>Research Article</subject><subject>Robotics</subject><subject>Simulation</subject><subject>Superalloys</subject><subject>仿真结果</subject><subject>光合细菌</subject><subject>分子动力学模拟</subject><subject>嵌入原子模型</subject><subject>微观结构</subject><subject>滑移带</subject><subject>疲劳裂纹萌生</subject><subject>镍基高温合金</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhCMEEqXwANwsOBtsJ7GdIxQKSOVHKpw4WK6zKSlJnNqJ1L49rlLBjdOuVt_MaCeKzim5ooSIa08pj2NMKMeUxCneHEQjKlKKZcrIYdgTwbGkkh9HJ96vCOGCZcko-ny2FZi-0g7dbRtdl8ajeVmHQ1faBtkCvYHzpe-g6dC8Klt0q5vco6l19YCUDXopzTdUeKE9oHnfgtNVZbf-NDoqdOXhbD_H0cf0_n3yiGevD0-Tmxk2seQd1jzhpqBgcg0mBeCJXCyYFoLnaZZzQxJCSCZAJpowQoHluWSpoZLwhEGcx-PocvBtnV334Du1sr1rQqRiWXhZxoKngaIDZZz13kGhWlfW2m0VJWrXoRo6VKFDtetQbYKGDRof2GYJ7s_5P9HFPujLNst10P0mcUGZ4FJk8Q9HfoC-</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Huang, Jian-Feng</creator><creator>Wang, Zhong-Lai</creator><creator>Yang, Er-Fu</creator><creator>McGlinchey, Don</creator><creator>Luo, Yuan-Xin</creator><creator>Li, Yun</creator><creator>Chen, Yi</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>Molecular Dynamics Simulation of Persistent Slip Bands Formation in Nickel-base Superalloys</title><author>Huang, Jian-Feng ; Wang, Zhong-Lai ; Yang, Er-Fu ; McGlinchey, Don ; Luo, Yuan-Xin ; Li, Yun ; Chen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a646cf1ecdaec5ee648bb2a776d59d6c0400097e84a0201e2dd825c180642e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Crack initiation</topic><topic>Edge dislocations</topic><topic>Embedded atom method</topic><topic>Engineering</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Gamma phase</topic><topic>Grain orientation</topic><topic>Mechatronics</topic><topic>Microstructure</topic><topic>Molecular dynamics</topic><topic>Nickel base alloys</topic><topic>Research Article</topic><topic>Robotics</topic><topic>Simulation</topic><topic>Superalloys</topic><topic>仿真结果</topic><topic>光合细菌</topic><topic>分子动力学模拟</topic><topic>嵌入原子模型</topic><topic>微观结构</topic><topic>滑移带</topic><topic>疲劳裂纹萌生</topic><topic>镍基高温合金</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jian-Feng</creatorcontrib><creatorcontrib>Wang, Zhong-Lai</creatorcontrib><creatorcontrib>Yang, Er-Fu</creatorcontrib><creatorcontrib>McGlinchey, Don</creatorcontrib><creatorcontrib>Luo, Yuan-Xin</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Chen, Yi</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jian-Feng</au><au>Wang, Zhong-Lai</au><au>Yang, Er-Fu</au><au>McGlinchey, Don</au><au>Luo, Yuan-Xin</au><au>Li, Yun</au><au>Chen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Persistent Slip Bands Formation in Nickel-base Superalloys</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><addtitle>International Journal of Automation and computing</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>14</volume><issue>1</issue><spage>68</spage><epage>79</epage><pages>68-79</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>Persistent slip band (PSB) is an important and typical microstructure generated during fatigue crack initiation. Intensive work has been done to investigate the mechanisms of the formation of persistent slip bands since the 1950s when Wadsworth[1] observed the fatigue fracture in copper. Simulations have indicated that PSBs formation during fatigue crack initiation is related to the dislocation driving force and interaction. In this paper, a molecular dynamics (MD) simulation associated with embedded atom model (EAM) is applied to the PSBs formation in nickel-base superalloys with different microstructure and temperature under tensile- tensile loadings. Five MD models with different microstructure (pure 5/ phase and γ/γ' phase), grain orientation ([1 0 0][0 1 0][0 0 1] and [1 1 1][1 0 1][1 2 1]) and simulation temperature (300 K, 600 K, 900 K) were built up in these simulations. Our results indicated that within the γ phase by massive dislocations, pile-up and propagation which can penetrate the grain. Also, it is found that the temperature will affect the material fatigue performance and blur PSBs appearance. The simulation results are in strong agreement with published experimental test result. This simulation is based on the work[2]. The highlights of the article include: 1) investigation of the PSB formation via molecular dynamics simulation with three different parameters, 2) conduct of a new deformation and velocity combination controlled simulation for the PSB formation, 3) high-performance computing of PSB formation, and 4) systematic analysis of the PSB formation at the atomic scale in which the dislocation plays a critical role.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-016-1035-x</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-8186
ispartof International journal of automation and computing, 2017-02, Vol.14 (1), p.68-79
issn 1476-8186
2153-182X
1751-8520
2153-1838
language eng
recordid cdi_proquest_journals_2918683765
source ProQuest Central UK/Ireland; ProQuest Central
subjects CAE) and Design
Computer Applications
Computer-Aided Engineering (CAD
Control
Crack initiation
Edge dislocations
Embedded atom method
Engineering
Fatigue cracks
Fatigue failure
Fracture mechanics
Gamma phase
Grain orientation
Mechatronics
Microstructure
Molecular dynamics
Nickel base alloys
Research Article
Robotics
Simulation
Superalloys
仿真结果
光合细菌
分子动力学模拟
嵌入原子模型
微观结构
滑移带
疲劳裂纹萌生
镍基高温合金
title Molecular Dynamics Simulation of Persistent Slip Bands Formation in Nickel-base Superalloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A06%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Persistent%20Slip%20Bands%20Formation%20in%20Nickel-base%20Superalloys&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Huang,%20Jian-Feng&rft.date=2017-02-01&rft.volume=14&rft.issue=1&rft.spage=68&rft.epage=79&rft.pages=68-79&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-016-1035-x&rft_dat=%3Cproquest_cross%3E2918683765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918683765&rft_id=info:pmid/&rft_cqvip_id=671276879&rfr_iscdi=true