A Novel Minkowski-distance-based Consensus Clustering Algorithm
Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number i...
Gespeichert in:
Veröffentlicht in: | International journal of automation and computing 2017-02, Vol.14 (1), p.33-44 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 44 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | International journal of automation and computing |
container_volume | 14 |
creator | Xu, De-Gang Zhao, Pan-Lei Yang, Chun-Hua Gui, Wei-Hua He, Jian-Jun |
description | Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process. |
doi_str_mv | 10.1007/s11633-016-1033-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918683736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671276876</cqvip_id><sourcerecordid>2918683736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIHcIvgbNi1E9s5oSriJRW4wNlyErdNm8atnYDo1-MqFdw47RzmsTNRdIlwgwDi1iNyxgggJwgB7I6iEYoUiUwpHAecCE4kSn4anXm_BOCCZskoupvEr_bTNPFL3a7sl1_VpKp9p9vSkEJ7U8W5bb1pfe_jvOl9Z1zdzuNJM7eu7hbr8-hkphtvLg53HH083L_nT2T69vicT6akZAnrSFIwAZCiFoWQNM1Ai_AYlzrJeFEh46bKBOVUQyrlDDSTBqjUWGIFTGaCjaPrwXfj7LY3vlNL27s2RCqahVqSCcYDCwdW6az3zszUxtVr7b4VgtrvpIadVNhJ7XdSu6Chg8Zv9tWM-3P-T3R1CFrYdr4Nut8kLpAKLgVnP65YdLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918683736</pqid></control><display><type>article</type><title>A Novel Minkowski-distance-based Consensus Clustering Algorithm</title><source>ProQuest Central</source><creator>Xu, De-Gang ; Zhao, Pan-Lei ; Yang, Chun-Hua ; Gui, Wei-Hua ; He, Jian-Jun</creator><creatorcontrib>Xu, De-Gang ; Zhao, Pan-Lei ; Yang, Chun-Hua ; Gui, Wei-Hua ; He, Jian-Jun</creatorcontrib><description>Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-016-1033-z</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>Algorithms ; Automation ; CAE) and Design ; Cluster analysis ; Clustering ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Data processing ; Datasets ; Eigenvalues ; Engineering ; Flotation ; Greedy algorithms ; Mechatronics ; Methods ; Noise sensitivity ; Processing industry ; R&D ; Research & development ; Research Article ; Robotics ; 一致性 ; 复杂网络 ; 聚类算法 ; 自动设置 ; 贪婪算法 ; 距离 ; 闵可夫斯基 ; 集成解决方案</subject><ispartof>International journal of automation and computing, 2017-02, Vol.14 (1), p.33-44</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</citedby><cites>FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88433X/88433X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918683736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Xu, De-Gang</creatorcontrib><creatorcontrib>Zhao, Pan-Lei</creatorcontrib><creatorcontrib>Yang, Chun-Hua</creatorcontrib><creatorcontrib>Gui, Wei-Hua</creatorcontrib><creatorcontrib>He, Jian-Jun</creatorcontrib><title>A Novel Minkowski-distance-based Consensus Clustering Algorithm</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><addtitle>International Journal of Automation and computing</addtitle><description>Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.</description><subject>Algorithms</subject><subject>Automation</subject><subject>CAE) and Design</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Flotation</subject><subject>Greedy algorithms</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Noise sensitivity</subject><subject>Processing industry</subject><subject>R&D</subject><subject>Research & development</subject><subject>Research Article</subject><subject>Robotics</subject><subject>一致性</subject><subject>复杂网络</subject><subject>聚类算法</subject><subject>自动设置</subject><subject>贪婪算法</subject><subject>距离</subject><subject>闵可夫斯基</subject><subject>集成解决方案</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQjBBIlMIHcIvgbNi1E9s5oSriJRW4wNlyErdNm8atnYDo1-MqFdw47RzmsTNRdIlwgwDi1iNyxgggJwgB7I6iEYoUiUwpHAecCE4kSn4anXm_BOCCZskoupvEr_bTNPFL3a7sl1_VpKp9p9vSkEJ7U8W5bb1pfe_jvOl9Z1zdzuNJM7eu7hbr8-hkphtvLg53HH083L_nT2T69vicT6akZAnrSFIwAZCiFoWQNM1Ai_AYlzrJeFEh46bKBOVUQyrlDDSTBqjUWGIFTGaCjaPrwXfj7LY3vlNL27s2RCqahVqSCcYDCwdW6az3zszUxtVr7b4VgtrvpIadVNhJ7XdSu6Chg8Zv9tWM-3P-T3R1CFrYdr4Nut8kLpAKLgVnP65YdLY</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Xu, De-Gang</creator><creator>Zhao, Pan-Lei</creator><creator>Yang, Chun-Hua</creator><creator>Gui, Wei-Hua</creator><creator>He, Jian-Jun</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>A Novel Minkowski-distance-based Consensus Clustering Algorithm</title><author>Xu, De-Gang ; Zhao, Pan-Lei ; Yang, Chun-Hua ; Gui, Wei-Hua ; He, Jian-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>CAE) and Design</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Flotation</topic><topic>Greedy algorithms</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Noise sensitivity</topic><topic>Processing industry</topic><topic>R&D</topic><topic>Research & development</topic><topic>Research Article</topic><topic>Robotics</topic><topic>一致性</topic><topic>复杂网络</topic><topic>聚类算法</topic><topic>自动设置</topic><topic>贪婪算法</topic><topic>距离</topic><topic>闵可夫斯基</topic><topic>集成解决方案</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, De-Gang</creatorcontrib><creatorcontrib>Zhao, Pan-Lei</creatorcontrib><creatorcontrib>Yang, Chun-Hua</creatorcontrib><creatorcontrib>Gui, Wei-Hua</creatorcontrib><creatorcontrib>He, Jian-Jun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, De-Gang</au><au>Zhao, Pan-Lei</au><au>Yang, Chun-Hua</au><au>Gui, Wei-Hua</au><au>He, Jian-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Minkowski-distance-based Consensus Clustering Algorithm</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><addtitle>International Journal of Automation and computing</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>14</volume><issue>1</issue><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-016-1033-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-8186 |
ispartof | International journal of automation and computing, 2017-02, Vol.14 (1), p.33-44 |
issn | 1476-8186 2153-182X 1751-8520 2153-1838 |
language | eng |
recordid | cdi_proquest_journals_2918683736 |
source | ProQuest Central |
subjects | Algorithms Automation CAE) and Design Cluster analysis Clustering Computer Applications Computer-Aided Engineering (CAD Control Data processing Datasets Eigenvalues Engineering Flotation Greedy algorithms Mechatronics Methods Noise sensitivity Processing industry R&D Research & development Research Article Robotics 一致性 复杂网络 聚类算法 自动设置 贪婪算法 距离 闵可夫斯基 集成解决方案 |
title | A Novel Minkowski-distance-based Consensus Clustering Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Minkowski-distance-based%20Consensus%20Clustering%20Algorithm&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Xu,%20De-Gang&rft.date=2017-02-01&rft.volume=14&rft.issue=1&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-016-1033-z&rft_dat=%3Cproquest_cross%3E2918683736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918683736&rft_id=info:pmid/&rft_cqvip_id=671276876&rfr_iscdi=true |