A Novel Minkowski-distance-based Consensus Clustering Algorithm

Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2017-02, Vol.14 (1), p.33-44
Hauptverfasser: Xu, De-Gang, Zhao, Pan-Lei, Yang, Chun-Hua, Gui, Wei-Hua, He, Jian-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue 1
container_start_page 33
container_title International journal of automation and computing
container_volume 14
creator Xu, De-Gang
Zhao, Pan-Lei
Yang, Chun-Hua
Gui, Wei-Hua
He, Jian-Jun
description Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.
doi_str_mv 10.1007/s11633-016-1033-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918683736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671276876</cqvip_id><sourcerecordid>2918683736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIHcIvgbNi1E9s5oSriJRW4wNlyErdNm8atnYDo1-MqFdw47RzmsTNRdIlwgwDi1iNyxgggJwgB7I6iEYoUiUwpHAecCE4kSn4anXm_BOCCZskoupvEr_bTNPFL3a7sl1_VpKp9p9vSkEJ7U8W5bb1pfe_jvOl9Z1zdzuNJM7eu7hbr8-hkphtvLg53HH083L_nT2T69vicT6akZAnrSFIwAZCiFoWQNM1Ai_AYlzrJeFEh46bKBOVUQyrlDDSTBqjUWGIFTGaCjaPrwXfj7LY3vlNL27s2RCqahVqSCcYDCwdW6az3zszUxtVr7b4VgtrvpIadVNhJ7XdSu6Chg8Zv9tWM-3P-T3R1CFrYdr4Nut8kLpAKLgVnP65YdLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918683736</pqid></control><display><type>article</type><title>A Novel Minkowski-distance-based Consensus Clustering Algorithm</title><source>ProQuest Central</source><creator>Xu, De-Gang ; Zhao, Pan-Lei ; Yang, Chun-Hua ; Gui, Wei-Hua ; He, Jian-Jun</creator><creatorcontrib>Xu, De-Gang ; Zhao, Pan-Lei ; Yang, Chun-Hua ; Gui, Wei-Hua ; He, Jian-Jun</creatorcontrib><description>Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-016-1033-z</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>Algorithms ; Automation ; CAE) and Design ; Cluster analysis ; Clustering ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Data processing ; Datasets ; Eigenvalues ; Engineering ; Flotation ; Greedy algorithms ; Mechatronics ; Methods ; Noise sensitivity ; Processing industry ; R&amp;D ; Research &amp; development ; Research Article ; Robotics ; 一致性 ; 复杂网络 ; 聚类算法 ; 自动设置 ; 贪婪算法 ; 距离 ; 闵可夫斯基 ; 集成解决方案</subject><ispartof>International journal of automation and computing, 2017-02, Vol.14 (1), p.33-44</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</citedby><cites>FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88433X/88433X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918683736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Xu, De-Gang</creatorcontrib><creatorcontrib>Zhao, Pan-Lei</creatorcontrib><creatorcontrib>Yang, Chun-Hua</creatorcontrib><creatorcontrib>Gui, Wei-Hua</creatorcontrib><creatorcontrib>He, Jian-Jun</creatorcontrib><title>A Novel Minkowski-distance-based Consensus Clustering Algorithm</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><addtitle>International Journal of Automation and computing</addtitle><description>Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.</description><subject>Algorithms</subject><subject>Automation</subject><subject>CAE) and Design</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Eigenvalues</subject><subject>Engineering</subject><subject>Flotation</subject><subject>Greedy algorithms</subject><subject>Mechatronics</subject><subject>Methods</subject><subject>Noise sensitivity</subject><subject>Processing industry</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research Article</subject><subject>Robotics</subject><subject>一致性</subject><subject>复杂网络</subject><subject>聚类算法</subject><subject>自动设置</subject><subject>贪婪算法</subject><subject>距离</subject><subject>闵可夫斯基</subject><subject>集成解决方案</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQjBBIlMIHcIvgbNi1E9s5oSriJRW4wNlyErdNm8atnYDo1-MqFdw47RzmsTNRdIlwgwDi1iNyxgggJwgB7I6iEYoUiUwpHAecCE4kSn4anXm_BOCCZskoupvEr_bTNPFL3a7sl1_VpKp9p9vSkEJ7U8W5bb1pfe_jvOl9Z1zdzuNJM7eu7hbr8-hkphtvLg53HH083L_nT2T69vicT6akZAnrSFIwAZCiFoWQNM1Ai_AYlzrJeFEh46bKBOVUQyrlDDSTBqjUWGIFTGaCjaPrwXfj7LY3vlNL27s2RCqahVqSCcYDCwdW6az3zszUxtVr7b4VgtrvpIadVNhJ7XdSu6Chg8Zv9tWM-3P-T3R1CFrYdr4Nut8kLpAKLgVnP65YdLY</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Xu, De-Gang</creator><creator>Zhao, Pan-Lei</creator><creator>Yang, Chun-Hua</creator><creator>Gui, Wei-Hua</creator><creator>He, Jian-Jun</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>A Novel Minkowski-distance-based Consensus Clustering Algorithm</title><author>Xu, De-Gang ; Zhao, Pan-Lei ; Yang, Chun-Hua ; Gui, Wei-Hua ; He, Jian-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4b370051a7b782590a785268a496bd136ed97262a0588f0a38e028a1c1d038973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>CAE) and Design</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Eigenvalues</topic><topic>Engineering</topic><topic>Flotation</topic><topic>Greedy algorithms</topic><topic>Mechatronics</topic><topic>Methods</topic><topic>Noise sensitivity</topic><topic>Processing industry</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research Article</topic><topic>Robotics</topic><topic>一致性</topic><topic>复杂网络</topic><topic>聚类算法</topic><topic>自动设置</topic><topic>贪婪算法</topic><topic>距离</topic><topic>闵可夫斯基</topic><topic>集成解决方案</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, De-Gang</creatorcontrib><creatorcontrib>Zhao, Pan-Lei</creatorcontrib><creatorcontrib>Yang, Chun-Hua</creatorcontrib><creatorcontrib>Gui, Wei-Hua</creatorcontrib><creatorcontrib>He, Jian-Jun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, De-Gang</au><au>Zhao, Pan-Lei</au><au>Yang, Chun-Hua</au><au>Gui, Wei-Hua</au><au>He, Jian-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Minkowski-distance-based Consensus Clustering Algorithm</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><addtitle>International Journal of Automation and computing</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>14</volume><issue>1</issue><spage>33</spage><epage>44</epage><pages>33-44</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>Consensus clustering is the problem of coordinating clustering information about the same data set coming from different runs of the same algorithm. Consensus clustering is becoming a state-of-the-art approach in an increasing number of applications. However, determining the optimal cluster number is still an open problem. In this paper, we propose a novel consensus clustering algorithm that is based on the Minkowski distance. Fusing with the Newman greedy algorithm in complex networks, the proposed clustering algorithm can automatically set the number of clusters. It is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. A numerical simulation is also given to demonstrate the effectiveness of the proposed algorithm. Finally, this consensus clustering algorithm is applied to a froth flotation process.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-016-1033-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-8186
ispartof International journal of automation and computing, 2017-02, Vol.14 (1), p.33-44
issn 1476-8186
2153-182X
1751-8520
2153-1838
language eng
recordid cdi_proquest_journals_2918683736
source ProQuest Central
subjects Algorithms
Automation
CAE) and Design
Cluster analysis
Clustering
Computer Applications
Computer-Aided Engineering (CAD
Control
Data processing
Datasets
Eigenvalues
Engineering
Flotation
Greedy algorithms
Mechatronics
Methods
Noise sensitivity
Processing industry
R&D
Research & development
Research Article
Robotics
一致性
复杂网络
聚类算法
自动设置
贪婪算法
距离
闵可夫斯基
集成解决方案
title A Novel Minkowski-distance-based Consensus Clustering Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T21%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Minkowski-distance-based%20Consensus%20Clustering%20Algorithm&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Xu,%20De-Gang&rft.date=2017-02-01&rft.volume=14&rft.issue=1&rft.spage=33&rft.epage=44&rft.pages=33-44&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-016-1033-z&rft_dat=%3Cproquest_cross%3E2918683736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918683736&rft_id=info:pmid/&rft_cqvip_id=671276876&rfr_iscdi=true