Bounded Real Lemmas for Fractional Order Systems
This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relax...
Gespeichert in:
Veröffentlicht in: | International journal of automation and computing 2015-04, Vol.12 (2), p.192-198 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 2 |
container_start_page | 192 |
container_title | International journal of automation and computing |
container_volume | 12 |
creator | Liang, Shu Wei, Yi-Heng Pan, Jin-Wen Gao, Qing Wang, Yong |
description | This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods. |
doi_str_mv | 10.1007/s11633-014-0868-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918683733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>74688983504849534850484857</cqvip_id><sourcerecordid>1685784149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4G7AjZvRZHI7WWqxKhQKXtYhk0lqy1zaZLro25s6RcRFVzmE7z-XD6Frgu8IxvI-EiIozTFhOQYBOTtBIyI5yYEX-DTVTIocCIhzdBHjCmMhC8VGCD9227ZyVfbmTJ3NXNOYmPkuZNNgbL_s2vQ7D5UL2fsu9q6Jl-jMmzq6q8M7Rp_Tp4_JSz6bP79OHma55ZT1uVe-Kn0hoaSW4gqokRwrWypTGlFYhY0rpROKgbDGe8MtYM59qWhZALclHaPboe86dJuti71ultG6ujat67ZREwFcAiNMJfTmH7rqtiFtHnWh0slAJaXHKJJkAGWSskSRgbKhizE4r9dh2Ziw0wTrvWk9mNbJtN6b1vtMMWRiYtuFC386HwnRw6Cvrl1sUu53kmQCQAHlmAFTSSf8VOle-g19MY2V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918683733</pqid></control><display><type>article</type><title>Bounded Real Lemmas for Fractional Order Systems</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Liang, Shu ; Wei, Yi-Heng ; Pan, Jin-Wen ; Gao, Qing ; Wang, Yong</creator><creatorcontrib>Liang, Shu ; Wei, Yi-Heng ; Pan, Jin-Wen ; Gao, Qing ; Wang, Yong</creatorcontrib><description>This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-014-0868-4</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>bounded ; CAE) and Design ; Computation ; Computational efficiency ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Control systems ; Controllers ; Engineering ; Fractional ; H-infinity control ; H∞control ; H∞norm ; inequality(LMI) ; lemmas ; linear ; Linear matrix inequalities ; L∞norm ; Mathematical analysis ; matrix ; Mechatronics ; Norms ; order ; real ; Regular Paper ; Robotics ; Synthesis ; systems ; Systems analysis ; Systems stability</subject><ispartof>International journal of automation and computing, 2015-04, Vol.12 (2), p.192-198</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</citedby><cites>FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88433X/88433X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918683733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,43810,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Liang, Shu</creatorcontrib><creatorcontrib>Wei, Yi-Heng</creatorcontrib><creatorcontrib>Pan, Jin-Wen</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>Bounded Real Lemmas for Fractional Order Systems</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><addtitle>国际自动化与计算杂志(英文版)</addtitle><description>This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.</description><subject>bounded</subject><subject>CAE) and Design</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Fractional</subject><subject>H-infinity control</subject><subject>H∞control</subject><subject>H∞norm</subject><subject>inequality(LMI)</subject><subject>lemmas</subject><subject>linear</subject><subject>Linear matrix inequalities</subject><subject>L∞norm</subject><subject>Mathematical analysis</subject><subject>matrix</subject><subject>Mechatronics</subject><subject>Norms</subject><subject>order</subject><subject>real</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Synthesis</subject><subject>systems</subject><subject>Systems analysis</subject><subject>Systems stability</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsP4G7AjZvRZHI7WWqxKhQKXtYhk0lqy1zaZLro25s6RcRFVzmE7z-XD6Frgu8IxvI-EiIozTFhOQYBOTtBIyI5yYEX-DTVTIocCIhzdBHjCmMhC8VGCD9227ZyVfbmTJ3NXNOYmPkuZNNgbL_s2vQ7D5UL2fsu9q6Jl-jMmzq6q8M7Rp_Tp4_JSz6bP79OHma55ZT1uVe-Kn0hoaSW4gqokRwrWypTGlFYhY0rpROKgbDGe8MtYM59qWhZALclHaPboe86dJuti71ultG6ujat67ZREwFcAiNMJfTmH7rqtiFtHnWh0slAJaXHKJJkAGWSskSRgbKhizE4r9dh2Ziw0wTrvWk9mNbJtN6b1vtMMWRiYtuFC386HwnRw6Cvrl1sUu53kmQCQAHlmAFTSSf8VOle-g19MY2V</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Liang, Shu</creator><creator>Wei, Yi-Heng</creator><creator>Pan, Jin-Wen</creator><creator>Gao, Qing</creator><creator>Wang, Yong</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Bounded Real Lemmas for Fractional Order Systems</title><author>Liang, Shu ; Wei, Yi-Heng ; Pan, Jin-Wen ; Gao, Qing ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bounded</topic><topic>CAE) and Design</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Fractional</topic><topic>H-infinity control</topic><topic>H∞control</topic><topic>H∞norm</topic><topic>inequality(LMI)</topic><topic>lemmas</topic><topic>linear</topic><topic>Linear matrix inequalities</topic><topic>L∞norm</topic><topic>Mathematical analysis</topic><topic>matrix</topic><topic>Mechatronics</topic><topic>Norms</topic><topic>order</topic><topic>real</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Synthesis</topic><topic>systems</topic><topic>Systems analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shu</creatorcontrib><creatorcontrib>Wei, Yi-Heng</creatorcontrib><creatorcontrib>Pan, Jin-Wen</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shu</au><au>Wei, Yi-Heng</au><au>Pan, Jin-Wen</au><au>Gao, Qing</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded Real Lemmas for Fractional Order Systems</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><addtitle>国际自动化与计算杂志(英文版)</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>12</volume><issue>2</issue><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-014-0868-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-8186 |
ispartof | International journal of automation and computing, 2015-04, Vol.12 (2), p.192-198 |
issn | 1476-8186 2153-182X 1751-8520 2153-1838 |
language | eng |
recordid | cdi_proquest_journals_2918683733 |
source | ProQuest Central UK/Ireland; ProQuest Central |
subjects | bounded CAE) and Design Computation Computational efficiency Computer Applications Computer-Aided Engineering (CAD Control Control systems Controllers Engineering Fractional H-infinity control H∞control H∞norm inequality(LMI) lemmas linear Linear matrix inequalities L∞norm Mathematical analysis matrix Mechatronics Norms order real Regular Paper Robotics Synthesis systems Systems analysis Systems stability |
title | Bounded Real Lemmas for Fractional Order Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20Real%20Lemmas%20for%20Fractional%20Order%20Systems&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Liang,%20Shu&rft.date=2015-04-01&rft.volume=12&rft.issue=2&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-014-0868-4&rft_dat=%3Cproquest_cross%3E1685784149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918683733&rft_id=info:pmid/&rft_cqvip_id=74688983504849534850484857&rfr_iscdi=true |