Bounded Real Lemmas for Fractional Order Systems

This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relax...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2015-04, Vol.12 (2), p.192-198
Hauptverfasser: Liang, Shu, Wei, Yi-Heng, Pan, Jin-Wen, Gao, Qing, Wang, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 2
container_start_page 192
container_title International journal of automation and computing
container_volume 12
creator Liang, Shu
Wei, Yi-Heng
Pan, Jin-Wen
Gao, Qing
Wang, Yong
description This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.
doi_str_mv 10.1007/s11633-014-0868-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918683733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>74688983504849534850484857</cqvip_id><sourcerecordid>1685784149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4G7AjZvRZHI7WWqxKhQKXtYhk0lqy1zaZLro25s6RcRFVzmE7z-XD6Frgu8IxvI-EiIozTFhOQYBOTtBIyI5yYEX-DTVTIocCIhzdBHjCmMhC8VGCD9227ZyVfbmTJ3NXNOYmPkuZNNgbL_s2vQ7D5UL2fsu9q6Jl-jMmzq6q8M7Rp_Tp4_JSz6bP79OHma55ZT1uVe-Kn0hoaSW4gqokRwrWypTGlFYhY0rpROKgbDGe8MtYM59qWhZALclHaPboe86dJuti71ultG6ujat67ZREwFcAiNMJfTmH7rqtiFtHnWh0slAJaXHKJJkAGWSskSRgbKhizE4r9dh2Ziw0wTrvWk9mNbJtN6b1vtMMWRiYtuFC386HwnRw6Cvrl1sUu53kmQCQAHlmAFTSSf8VOle-g19MY2V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918683733</pqid></control><display><type>article</type><title>Bounded Real Lemmas for Fractional Order Systems</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Liang, Shu ; Wei, Yi-Heng ; Pan, Jin-Wen ; Gao, Qing ; Wang, Yong</creator><creatorcontrib>Liang, Shu ; Wei, Yi-Heng ; Pan, Jin-Wen ; Gao, Qing ; Wang, Yong</creatorcontrib><description>This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-014-0868-4</identifier><language>eng</language><publisher>Beijing: Institute of Automation, Chinese Academy of Sciences</publisher><subject>bounded ; CAE) and Design ; Computation ; Computational efficiency ; Computer Applications ; Computer-Aided Engineering (CAD ; Control ; Control systems ; Controllers ; Engineering ; Fractional ; H-infinity control ; H∞control ; H∞norm ; inequality(LMI) ; lemmas ; linear ; Linear matrix inequalities ; L∞norm ; Mathematical analysis ; matrix ; Mechatronics ; Norms ; order ; real ; Regular Paper ; Robotics ; Synthesis ; systems ; Systems analysis ; Systems stability</subject><ispartof>International journal of automation and computing, 2015-04, Vol.12 (2), p.192-198</ispartof><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</citedby><cites>FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88433X/88433X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918683733?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21393,27929,27930,33749,43810,64390,64394,72474</link.rule.ids></links><search><creatorcontrib>Liang, Shu</creatorcontrib><creatorcontrib>Wei, Yi-Heng</creatorcontrib><creatorcontrib>Pan, Jin-Wen</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>Bounded Real Lemmas for Fractional Order Systems</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><addtitle>国际自动化与计算杂志(英文版)</addtitle><description>This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.</description><subject>bounded</subject><subject>CAE) and Design</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Engineering</subject><subject>Fractional</subject><subject>H-infinity control</subject><subject>H∞control</subject><subject>H∞norm</subject><subject>inequality(LMI)</subject><subject>lemmas</subject><subject>linear</subject><subject>Linear matrix inequalities</subject><subject>L∞norm</subject><subject>Mathematical analysis</subject><subject>matrix</subject><subject>Mechatronics</subject><subject>Norms</subject><subject>order</subject><subject>real</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Synthesis</subject><subject>systems</subject><subject>Systems analysis</subject><subject>Systems stability</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWKsP4G7AjZvRZHI7WWqxKhQKXtYhk0lqy1zaZLro25s6RcRFVzmE7z-XD6Frgu8IxvI-EiIozTFhOQYBOTtBIyI5yYEX-DTVTIocCIhzdBHjCmMhC8VGCD9227ZyVfbmTJ3NXNOYmPkuZNNgbL_s2vQ7D5UL2fsu9q6Jl-jMmzq6q8M7Rp_Tp4_JSz6bP79OHma55ZT1uVe-Kn0hoaSW4gqokRwrWypTGlFYhY0rpROKgbDGe8MtYM59qWhZALclHaPboe86dJuti71ultG6ujat67ZREwFcAiNMJfTmH7rqtiFtHnWh0slAJaXHKJJkAGWSskSRgbKhizE4r9dh2Ziw0wTrvWk9mNbJtN6b1vtMMWRiYtuFC386HwnRw6Cvrl1sUu53kmQCQAHlmAFTSSf8VOle-g19MY2V</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Liang, Shu</creator><creator>Wei, Yi-Heng</creator><creator>Pan, Jin-Wen</creator><creator>Gao, Qing</creator><creator>Wang, Yong</creator><general>Institute of Automation, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Bounded Real Lemmas for Fractional Order Systems</title><author>Liang, Shu ; Wei, Yi-Heng ; Pan, Jin-Wen ; Gao, Qing ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-f9fdbf278b3c30d83a7509cb9aba62c90aeb7e69486caffa5c8055fb93b285cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bounded</topic><topic>CAE) and Design</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Engineering</topic><topic>Fractional</topic><topic>H-infinity control</topic><topic>H∞control</topic><topic>H∞norm</topic><topic>inequality(LMI)</topic><topic>lemmas</topic><topic>linear</topic><topic>Linear matrix inequalities</topic><topic>L∞norm</topic><topic>Mathematical analysis</topic><topic>matrix</topic><topic>Mechatronics</topic><topic>Norms</topic><topic>order</topic><topic>real</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Synthesis</topic><topic>systems</topic><topic>Systems analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shu</creatorcontrib><creatorcontrib>Wei, Yi-Heng</creatorcontrib><creatorcontrib>Pan, Jin-Wen</creatorcontrib><creatorcontrib>Gao, Qing</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shu</au><au>Wei, Yi-Heng</au><au>Pan, Jin-Wen</au><au>Gao, Qing</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounded Real Lemmas for Fractional Order Systems</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><addtitle>国际自动化与计算杂志(英文版)</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>12</volume><issue>2</issue><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>This paper derives the bounded real lemmas corresponding to L∞norm and H∞norm(L-BR and H-BR) of fractional order systems. The lemmas reduce the original computations of norms into linear matrix inequality(LMI) problems, which can be performed in a computationally efficient fashion. This convex relaxation is enlightened from the generalized Kalman-YakubovichPopov(KYP) lemma and brings no conservatism to the L-BR. Meanwhile, an H-BR is developed similarly but with some conservatism.However, it can test the system stability automatically in addition to the norm computation, which is of fundamental importance for system analysis. From this advantage, we further address the synthesis problem of H∞control for fractional order systems in the form of LMI. Three illustrative examples are given to show the effectiveness of our methods.</abstract><cop>Beijing</cop><pub>Institute of Automation, Chinese Academy of Sciences</pub><doi>10.1007/s11633-014-0868-4</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-8186
ispartof International journal of automation and computing, 2015-04, Vol.12 (2), p.192-198
issn 1476-8186
2153-182X
1751-8520
2153-1838
language eng
recordid cdi_proquest_journals_2918683733
source ProQuest Central UK/Ireland; ProQuest Central
subjects bounded
CAE) and Design
Computation
Computational efficiency
Computer Applications
Computer-Aided Engineering (CAD
Control
Control systems
Controllers
Engineering
Fractional
H-infinity control
H∞control
H∞norm
inequality(LMI)
lemmas
linear
Linear matrix inequalities
L∞norm
Mathematical analysis
matrix
Mechatronics
Norms
order
real
Regular Paper
Robotics
Synthesis
systems
Systems analysis
Systems stability
title Bounded Real Lemmas for Fractional Order Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounded%20Real%20Lemmas%20for%20Fractional%20Order%20Systems&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Liang,%20Shu&rft.date=2015-04-01&rft.volume=12&rft.issue=2&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-014-0868-4&rft_dat=%3Cproquest_cross%3E1685784149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918683733&rft_id=info:pmid/&rft_cqvip_id=74688983504849534850484857&rfr_iscdi=true