SVM-based Identification and Un-calibrated Visual Servoing for Micro-manipulation

This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set's discernible matrix is proposed to identify and classify micro-targets. To avoid th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2010-02, Vol.7 (1), p.47-54
Hauptverfasser: Huang, Xin-Han, Zeng, Xiang-Jin, Wang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an improved support vector machine (SVM) algorithm, which employs invariant moments-based edge extraction to obtain feature attribute. A heuristic attribute reduction algorithm based on rough set's discernible matrix is proposed to identify and classify micro-targets. To avoid the complicated calibration for intrinsic parameters of camera, an improved Broyden's method is proposed to estimate the image Jacobian matrix which employs Chebyshev polynomial to construct a cost function to approximate the optimization value. Finally, a visual controller is designed for a robotic micromanipulation system. The experiment results of micro-parts assembly show that the proposed methods and algorithms are effective and feasible.
ISSN:1476-8186
2153-182X
1751-8520
2153-1838
DOI:10.1007/s11633-010-0047-1