A Multi-dimensional Index Structure Based on Improved VA-file and CAN in the Cloud

Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of"the curse of dime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of automation and computing 2014-02, Vol.11 (1), p.109-117
Hauptverfasser: Cheng, Chun-Ling, Sun, Chun-Ju, Xu, Xiao-Long, Zhang, Deng-Yin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 109
container_title International journal of automation and computing
container_volume 11
creator Cheng, Chun-Ling
Sun, Chun-Ju
Xu, Xiao-Long
Zhang, Deng-Yin
description Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of"the curse of dimensionality".In this paper,a novel VF-CAN indexing scheme is proposed.VF-CAN integrates content addressable network(CAN)based routing protocol and the improved vector approximation fle(VA-fle) index.There are two index levels in this scheme:global index and local index.The local index VAK-fle is built for the data in each storage node.VAK-fle is thek-means clustering result of VA-fle approximation vectors according to their degree of proximity.Each cluster forms a separate local index fle and each fle stores the approximate vectors that are contained in the cluster.The vector of each cluster center is stored in the cluster center information fle of corresponding storage node.In the global index,storage nodes are organized into an overlay network CAN,and in order to reduce the cost of calculation,only clustering information of local index is issued to the entire overlay network through the CAN interface.The experimental results show that VF-CAN reduces the index storage space and improves query performance efectively.
doi_str_mv 10.1007/s11633-014-0772-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918682782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1003343875</cqvip_id><sourcerecordid>1677902144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-4463d9ff4a7c0598f927979a64a3496efe44fa4bd98165f308e29bec5e3233813</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhSMEElD4AWyWWFgMfsWPsVQ8KhWQeK2Wm1xDUOq0doLov8dVGRAD073Dd8499imKE0rOKSHqIlEqOceECkyUYni9UxxQVVKsS0Z28y6UxJpquV8cpvRBiFTMiIPicYzuhrZvcN0sIKSmC65F01DDF3rq41D1QwR06RLUqAtouljG7jPvr2PsmxaQCzWajO9RE1D_DmjSdkN9VOx51yY4_pmj4uX66nlyi2cPN9PJeIYrIXSPhZC8Nt4LpypSGu0NU0YZJ4XjwkjwIIR3Yl4bTWXpOdHAzByqEjjjXFM-Ks62vjnTaoDU20WTKmhbF6AbkqVSKUMYFSKjp3_Qj26I-anJMpM_RTOl2X8UFYbznFhvvOiWqmKXUgRvl7FZuLi2lNhNF3bbhc1d2E0Xdp01bKtJmQ1vEH85_yP6iVO9d-FtlXW_LpEch2tV8m9qa5SO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918682782</pqid></control><display><type>article</type><title>A Multi-dimensional Index Structure Based on Improved VA-file and CAN in the Cloud</title><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Cheng, Chun-Ling ; Sun, Chun-Ju ; Xu, Xiao-Long ; Zhang, Deng-Yin</creator><creatorcontrib>Cheng, Chun-Ling ; Sun, Chun-Ju ; Xu, Xiao-Long ; Zhang, Deng-Yin</creatorcontrib><description>Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of&amp;quot;the curse of dimensionality&amp;quot;.In this paper,a novel VF-CAN indexing scheme is proposed.VF-CAN integrates content addressable network(CAN)based routing protocol and the improved vector approximation fle(VA-fle) index.There are two index levels in this scheme:global index and local index.The local index VAK-fle is built for the data in each storage node.VAK-fle is thek-means clustering result of VA-fle approximation vectors according to their degree of proximity.Each cluster forms a separate local index fle and each fle stores the approximate vectors that are contained in the cluster.The vector of each cluster center is stored in the cluster center information fle of corresponding storage node.In the global index,storage nodes are organized into an overlay network CAN,and in order to reduce the cost of calculation,only clustering information of local index is issued to the entire overlay network through the CAN interface.The experimental results show that VF-CAN reduces the index storage space and improves query performance efectively.</description><identifier>ISSN: 1476-8186</identifier><identifier>ISSN: 2153-182X</identifier><identifier>EISSN: 1751-8520</identifier><identifier>EISSN: 2153-1838</identifier><identifier>DOI: 10.1007/s11633-014-0772-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>addressable ; Approximation ; CAE) and Design ; Cloud ; Cloud computing ; Cluster analysis ; Clustering ; Clusters ; Computer Applications ; Computer-Aided Engineering (CAD ; computing ; content ; Control ; Controller area network ; Data processing ; Efficiency ; Engineering ; fle(VA-fle) ; index ; Indexing ; Mathematical analysis ; Mechatronics ; network(CAN) ; Networks ; Performance indices ; Publishing ; Queries ; Robotics ; search ; Searching ; similarity ; System effectiveness ; vector ; Vector quantization ; Vectors (mathematics)</subject><ispartof>International journal of automation and computing, 2014-02, Vol.11 (1), p.109-117</ispartof><rights>Science in China Press 2014</rights><rights>Institute of Automation, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014</rights><rights>Science in China Press 2014.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-4463d9ff4a7c0598f927979a64a3496efe44fa4bd98165f308e29bec5e3233813</citedby><cites>FETCH-LOGICAL-c448t-4463d9ff4a7c0598f927979a64a3496efe44fa4bd98165f308e29bec5e3233813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/88433X/88433X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918682782?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,43804,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Cheng, Chun-Ling</creatorcontrib><creatorcontrib>Sun, Chun-Ju</creatorcontrib><creatorcontrib>Xu, Xiao-Long</creatorcontrib><creatorcontrib>Zhang, Deng-Yin</creatorcontrib><title>A Multi-dimensional Index Structure Based on Improved VA-file and CAN in the Cloud</title><title>International journal of automation and computing</title><addtitle>Int. J. Autom. Comput</addtitle><addtitle>International Journal of Automation and computing</addtitle><description>Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of&amp;quot;the curse of dimensionality&amp;quot;.In this paper,a novel VF-CAN indexing scheme is proposed.VF-CAN integrates content addressable network(CAN)based routing protocol and the improved vector approximation fle(VA-fle) index.There are two index levels in this scheme:global index and local index.The local index VAK-fle is built for the data in each storage node.VAK-fle is thek-means clustering result of VA-fle approximation vectors according to their degree of proximity.Each cluster forms a separate local index fle and each fle stores the approximate vectors that are contained in the cluster.The vector of each cluster center is stored in the cluster center information fle of corresponding storage node.In the global index,storage nodes are organized into an overlay network CAN,and in order to reduce the cost of calculation,only clustering information of local index is issued to the entire overlay network through the CAN interface.The experimental results show that VF-CAN reduces the index storage space and improves query performance efectively.</description><subject>addressable</subject><subject>Approximation</subject><subject>CAE) and Design</subject><subject>Cloud</subject><subject>Cloud computing</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Computer Applications</subject><subject>Computer-Aided Engineering (CAD</subject><subject>computing</subject><subject>content</subject><subject>Control</subject><subject>Controller area network</subject><subject>Data processing</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>fle(VA-fle)</subject><subject>index</subject><subject>Indexing</subject><subject>Mathematical analysis</subject><subject>Mechatronics</subject><subject>network(CAN)</subject><subject>Networks</subject><subject>Performance indices</subject><subject>Publishing</subject><subject>Queries</subject><subject>Robotics</subject><subject>search</subject><subject>Searching</subject><subject>similarity</subject><subject>System effectiveness</subject><subject>vector</subject><subject>Vector quantization</subject><subject>Vectors (mathematics)</subject><issn>1476-8186</issn><issn>2153-182X</issn><issn>1751-8520</issn><issn>2153-1838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kTtPwzAUhSMEElD4AWyWWFgMfsWPsVQ8KhWQeK2Wm1xDUOq0doLov8dVGRAD073Dd8499imKE0rOKSHqIlEqOceECkyUYni9UxxQVVKsS0Z28y6UxJpquV8cpvRBiFTMiIPicYzuhrZvcN0sIKSmC65F01DDF3rq41D1QwR06RLUqAtouljG7jPvr2PsmxaQCzWajO9RE1D_DmjSdkN9VOx51yY4_pmj4uX66nlyi2cPN9PJeIYrIXSPhZC8Nt4LpypSGu0NU0YZJ4XjwkjwIIR3Yl4bTWXpOdHAzByqEjjjXFM-Ks62vjnTaoDU20WTKmhbF6AbkqVSKUMYFSKjp3_Qj26I-anJMpM_RTOl2X8UFYbznFhvvOiWqmKXUgRvl7FZuLi2lNhNF3bbhc1d2E0Xdp01bKtJmQ1vEH85_yP6iVO9d-FtlXW_LpEch2tV8m9qa5SO</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Cheng, Chun-Ling</creator><creator>Sun, Chun-Ju</creator><creator>Xu, Xiao-Long</creator><creator>Zhang, Deng-Yin</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>A Multi-dimensional Index Structure Based on Improved VA-file and CAN in the Cloud</title><author>Cheng, Chun-Ling ; Sun, Chun-Ju ; Xu, Xiao-Long ; Zhang, Deng-Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-4463d9ff4a7c0598f927979a64a3496efe44fa4bd98165f308e29bec5e3233813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>addressable</topic><topic>Approximation</topic><topic>CAE) and Design</topic><topic>Cloud</topic><topic>Cloud computing</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Computer Applications</topic><topic>Computer-Aided Engineering (CAD</topic><topic>computing</topic><topic>content</topic><topic>Control</topic><topic>Controller area network</topic><topic>Data processing</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>fle(VA-fle)</topic><topic>index</topic><topic>Indexing</topic><topic>Mathematical analysis</topic><topic>Mechatronics</topic><topic>network(CAN)</topic><topic>Networks</topic><topic>Performance indices</topic><topic>Publishing</topic><topic>Queries</topic><topic>Robotics</topic><topic>search</topic><topic>Searching</topic><topic>similarity</topic><topic>System effectiveness</topic><topic>vector</topic><topic>Vector quantization</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chun-Ling</creatorcontrib><creatorcontrib>Sun, Chun-Ju</creatorcontrib><creatorcontrib>Xu, Xiao-Long</creatorcontrib><creatorcontrib>Zhang, Deng-Yin</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of automation and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Chun-Ling</au><au>Sun, Chun-Ju</au><au>Xu, Xiao-Long</au><au>Zhang, Deng-Yin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-dimensional Index Structure Based on Improved VA-file and CAN in the Cloud</atitle><jtitle>International journal of automation and computing</jtitle><stitle>Int. J. Autom. Comput</stitle><addtitle>International Journal of Automation and computing</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>11</volume><issue>1</issue><spage>109</spage><epage>117</epage><pages>109-117</pages><issn>1476-8186</issn><issn>2153-182X</issn><eissn>1751-8520</eissn><eissn>2153-1838</eissn><abstract>Currently,the cloud computing systems use simple key-value data processing,which cannot support similarity search efectively due to lack of efcient index structures,and with the increase of dimensionality,the existing tree-like index structures could lead to the problem of&amp;quot;the curse of dimensionality&amp;quot;.In this paper,a novel VF-CAN indexing scheme is proposed.VF-CAN integrates content addressable network(CAN)based routing protocol and the improved vector approximation fle(VA-fle) index.There are two index levels in this scheme:global index and local index.The local index VAK-fle is built for the data in each storage node.VAK-fle is thek-means clustering result of VA-fle approximation vectors according to their degree of proximity.Each cluster forms a separate local index fle and each fle stores the approximate vectors that are contained in the cluster.The vector of each cluster center is stored in the cluster center information fle of corresponding storage node.In the global index,storage nodes are organized into an overlay network CAN,and in order to reduce the cost of calculation,only clustering information of local index is issued to the entire overlay network through the CAN interface.The experimental results show that VF-CAN reduces the index storage space and improves query performance efectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s11633-014-0772-y</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-8186
ispartof International journal of automation and computing, 2014-02, Vol.11 (1), p.109-117
issn 1476-8186
2153-182X
1751-8520
2153-1838
language eng
recordid cdi_proquest_journals_2918682782
source ProQuest Central UK/Ireland; ProQuest Central
subjects addressable
Approximation
CAE) and Design
Cloud
Cloud computing
Cluster analysis
Clustering
Clusters
Computer Applications
Computer-Aided Engineering (CAD
computing
content
Control
Controller area network
Data processing
Efficiency
Engineering
fle(VA-fle)
index
Indexing
Mathematical analysis
Mechatronics
network(CAN)
Networks
Performance indices
Publishing
Queries
Robotics
search
Searching
similarity
System effectiveness
vector
Vector quantization
Vectors (mathematics)
title A Multi-dimensional Index Structure Based on Improved VA-file and CAN in the Cloud
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-dimensional%20Index%20Structure%20Based%20on%20Improved%20VA-file%20and%20CAN%20in%20the%20Cloud&rft.jtitle=International%20journal%20of%20automation%20and%20computing&rft.au=Cheng,%20Chun-Ling&rft.date=2014-02-01&rft.volume=11&rft.issue=1&rft.spage=109&rft.epage=117&rft.pages=109-117&rft.issn=1476-8186&rft.eissn=1751-8520&rft_id=info:doi/10.1007/s11633-014-0772-y&rft_dat=%3Cproquest_cross%3E1677902144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918682782&rft_id=info:pmid/&rft_cqvip_id=1003343875&rfr_iscdi=true