Multiple player tracking in basketball court videos

To build a smart basketball court, one basic task is to track players with the aid of the basketball court monitoring. This task can be regarded as a special case of the multiple object tracking (MOT) problem. But different from it, the task puts request to the existing MOT methods with both good ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2020-12, Vol.17 (6), p.1811-1828
Hauptverfasser: Fu, Xubo, Zhang, Kun, Wang, Changgang, Fan, Chao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1828
container_issue 6
container_start_page 1811
container_title Journal of real-time image processing
container_volume 17
creator Fu, Xubo
Zhang, Kun
Wang, Changgang
Fan, Chao
description To build a smart basketball court, one basic task is to track players with the aid of the basketball court monitoring. This task can be regarded as a special case of the multiple object tracking (MOT) problem. But different from it, the task puts request to the existing MOT methods with both good accuracy and operational efficiency (toward real time) in the new basketball scenario. To deal with this task, we make the following attempts: (1) Considering the differences between pedestrians and basketball players and the lack of corresponding dataset for basketball players tracking, we construct a new MOT dataset under the basketball court monitoring scene, to better evaluate MOT methods in our task and to help promote future research in the related task, (2) evaluating the performance of the several candidate MOT methods on the new dataset, and (3) proposing the issues to be further addressed in this specific scenario.
doi_str_mv 10.1007/s11554-020-00968-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918678002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918678002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-30e36188350eb16582e8a859ccd0af8e8c01e345cd8c5d71d79553cf4e325c393</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5giMRvu7DqxR1QBRSpigdlynUuVNiTBTlH77zEEwcZ0N7z37t7H2CXCNQIUNxFRqRkHARzA5Jrvj9gEdY5cCzTHvzvAKTuLcQOQF7lUEyafds1Q9w1lfeMOFLIhOL-t23VWt9nKxS0NK9c0me92Ycg-6pK6eM5OKtdEuviZU_Z6f_cyX_Dl88Pj_HbJvUQzcAkkc9RaKqAV5koL0k4r430JrtKkPSDJmfKl9qossCyMUtJXM5JCeWnklF2NuX3o3ncUB7tJX7TppBUmFSo0gEgqMap86GIMVNk-1G8uHCyC_YJjRzg2wbHfcOw-meRoikncrin8Rf_j-gTWv2bl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918678002</pqid></control><display><type>article</type><title>Multiple player tracking in basketball court videos</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Fu, Xubo ; Zhang, Kun ; Wang, Changgang ; Fan, Chao</creator><creatorcontrib>Fu, Xubo ; Zhang, Kun ; Wang, Changgang ; Fan, Chao</creatorcontrib><description>To build a smart basketball court, one basic task is to track players with the aid of the basketball court monitoring. This task can be regarded as a special case of the multiple object tracking (MOT) problem. But different from it, the task puts request to the existing MOT methods with both good accuracy and operational efficiency (toward real time) in the new basketball scenario. To deal with this task, we make the following attempts: (1) Considering the differences between pedestrians and basketball players and the lack of corresponding dataset for basketball players tracking, we construct a new MOT dataset under the basketball court monitoring scene, to better evaluate MOT methods in our task and to help promote future research in the related task, (2) evaluating the performance of the several candidate MOT methods on the new dataset, and (3) proposing the issues to be further addressed in this specific scenario.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-020-00968-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Basketball ; Computer Graphics ; Computer Science ; Datasets ; Deep learning ; Image Processing and Computer Vision ; Methods ; Monitoring ; Multimedia Information Systems ; Multiple target tracking ; Neural networks ; Pattern Recognition ; Pedestrians ; Performance evaluation ; Players ; Sensors ; Signal,Image and Speech Processing ; Special Issue Paper</subject><ispartof>Journal of real-time image processing, 2020-12, Vol.17 (6), p.1811-1828</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-30e36188350eb16582e8a859ccd0af8e8c01e345cd8c5d71d79553cf4e325c393</citedby><cites>FETCH-LOGICAL-c319t-30e36188350eb16582e8a859ccd0af8e8c01e345cd8c5d71d79553cf4e325c393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-020-00968-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918678002?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Fu, Xubo</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wang, Changgang</creatorcontrib><creatorcontrib>Fan, Chao</creatorcontrib><title>Multiple player tracking in basketball court videos</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>To build a smart basketball court, one basic task is to track players with the aid of the basketball court monitoring. This task can be regarded as a special case of the multiple object tracking (MOT) problem. But different from it, the task puts request to the existing MOT methods with both good accuracy and operational efficiency (toward real time) in the new basketball scenario. To deal with this task, we make the following attempts: (1) Considering the differences between pedestrians and basketball players and the lack of corresponding dataset for basketball players tracking, we construct a new MOT dataset under the basketball court monitoring scene, to better evaluate MOT methods in our task and to help promote future research in the related task, (2) evaluating the performance of the several candidate MOT methods on the new dataset, and (3) proposing the issues to be further addressed in this specific scenario.</description><subject>Accuracy</subject><subject>Basketball</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Image Processing and Computer Vision</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Multimedia Information Systems</subject><subject>Multiple target tracking</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>Pedestrians</subject><subject>Performance evaluation</subject><subject>Players</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><subject>Special Issue Paper</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDFPwzAQhS0EEqXwB5giMRvu7DqxR1QBRSpigdlynUuVNiTBTlH77zEEwcZ0N7z37t7H2CXCNQIUNxFRqRkHARzA5Jrvj9gEdY5cCzTHvzvAKTuLcQOQF7lUEyafds1Q9w1lfeMOFLIhOL-t23VWt9nKxS0NK9c0me92Ycg-6pK6eM5OKtdEuviZU_Z6f_cyX_Dl88Pj_HbJvUQzcAkkc9RaKqAV5koL0k4r430JrtKkPSDJmfKl9qossCyMUtJXM5JCeWnklF2NuX3o3ncUB7tJX7TppBUmFSo0gEgqMap86GIMVNk-1G8uHCyC_YJjRzg2wbHfcOw-meRoikncrin8Rf_j-gTWv2bl</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Fu, Xubo</creator><creator>Zhang, Kun</creator><creator>Wang, Changgang</creator><creator>Fan, Chao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20201201</creationdate><title>Multiple player tracking in basketball court videos</title><author>Fu, Xubo ; Zhang, Kun ; Wang, Changgang ; Fan, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-30e36188350eb16582e8a859ccd0af8e8c01e345cd8c5d71d79553cf4e325c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Basketball</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Image Processing and Computer Vision</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Multimedia Information Systems</topic><topic>Multiple target tracking</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>Pedestrians</topic><topic>Performance evaluation</topic><topic>Players</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><topic>Special Issue Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xubo</creatorcontrib><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wang, Changgang</creatorcontrib><creatorcontrib>Fan, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xubo</au><au>Zhang, Kun</au><au>Wang, Changgang</au><au>Fan, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple player tracking in basketball court videos</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>1811</spage><epage>1828</epage><pages>1811-1828</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>To build a smart basketball court, one basic task is to track players with the aid of the basketball court monitoring. This task can be regarded as a special case of the multiple object tracking (MOT) problem. But different from it, the task puts request to the existing MOT methods with both good accuracy and operational efficiency (toward real time) in the new basketball scenario. To deal with this task, we make the following attempts: (1) Considering the differences between pedestrians and basketball players and the lack of corresponding dataset for basketball players tracking, we construct a new MOT dataset under the basketball court monitoring scene, to better evaluate MOT methods in our task and to help promote future research in the related task, (2) evaluating the performance of the several candidate MOT methods on the new dataset, and (3) proposing the issues to be further addressed in this specific scenario.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-020-00968-x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2020-12, Vol.17 (6), p.1811-1828
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918678002
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Accuracy
Basketball
Computer Graphics
Computer Science
Datasets
Deep learning
Image Processing and Computer Vision
Methods
Monitoring
Multimedia Information Systems
Multiple target tracking
Neural networks
Pattern Recognition
Pedestrians
Performance evaluation
Players
Sensors
Signal,Image and Speech Processing
Special Issue Paper
title Multiple player tracking in basketball court videos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20player%20tracking%20in%20basketball%20court%20videos&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Fu,%20Xubo&rft.date=2020-12-01&rft.volume=17&rft.issue=6&rft.spage=1811&rft.epage=1828&rft.pages=1811-1828&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-020-00968-x&rft_dat=%3Cproquest_cross%3E2918678002%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918678002&rft_id=info:pmid/&rfr_iscdi=true