Real-time object detection method of melon leaf diseases under complex background in greenhouse
Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the back...
Gespeichert in:
Veröffentlicht in: | Journal of real-time image processing 2022-10, Vol.19 (5), p.985-995 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 995 |
---|---|
container_issue | 5 |
container_start_page | 985 |
container_title | Journal of real-time image processing |
container_volume | 19 |
creator | Xu, Yanlei Chen, Qingyuan Kong, Shuolin Xing, Lu Wang, Qi Cong, Xue Zhou, Yang |
description | Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon (
Cucumis melon.
L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms. |
doi_str_mv | 10.1007/s11554-022-01239-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918677923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918677923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8R5Npk7RHWfyCBUH0HNJ0utu1bdakBf33Rit68_RmhvfezDxCzgW_FJzrqyiElDnjAIwLyEqmD8hCFEqwAkR5-FtzfkxOYtxxrrTK5IKYJ7QdG9seqa926EZa45ig9QPtcdz6mvomVV3qO7QNrduINmKk01BjoM73-w7faWXd6yb4NKTtQDcBcdj6KeIpOWpsF_HsB5fk5fbmeXXP1o93D6vrNXOQlyOThSggc0KBKiqwWAqloFRapmGe6XS3y2vHtZW2QAe2KiWvIAenbAUaZLYkF7PvPvi3CeNodn4KQ1ppoEzPa11Cllgws1zwMQZszD60vQ0fRnDzFaSZgzQpSPMdpNFJlM2imMjDBsOf9T-qT2lLdYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918677923</pqid></control><display><type>article</type><title>Real-time object detection method of melon leaf diseases under complex background in greenhouse</title><source>SpringerLink</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Xu, Yanlei ; Chen, Qingyuan ; Kong, Shuolin ; Xing, Lu ; Wang, Qi ; Cong, Xue ; Zhou, Yang</creator><creatorcontrib>Xu, Yanlei ; Chen, Qingyuan ; Kong, Shuolin ; Xing, Lu ; Wang, Qi ; Cong, Xue ; Zhou, Yang</creatorcontrib><description>Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon (
Cucumis melon.
L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-022-01239-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Cellular telephones ; Computer Graphics ; Computer Science ; Datasets ; Deep learning ; Disease ; Feature extraction ; Greenhouses ; Image Processing and Computer Vision ; Inference ; Leaves ; Methods ; Multimedia Information Systems ; Object recognition ; Original Research Paper ; Pathogens ; Pattern Recognition ; Plant diseases ; Real time ; Signal,Image and Speech Processing</subject><ispartof>Journal of real-time image processing, 2022-10, Vol.19 (5), p.985-995</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</citedby><cites>FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</cites><orcidid>0000-0002-7239-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-022-01239-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918677923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Xu, Yanlei</creatorcontrib><creatorcontrib>Chen, Qingyuan</creatorcontrib><creatorcontrib>Kong, Shuolin</creatorcontrib><creatorcontrib>Xing, Lu</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Cong, Xue</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><title>Real-time object detection method of melon leaf diseases under complex background in greenhouse</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon (
Cucumis melon.
L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cellular telephones</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Feature extraction</subject><subject>Greenhouses</subject><subject>Image Processing and Computer Vision</subject><subject>Inference</subject><subject>Leaves</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Research Paper</subject><subject>Pathogens</subject><subject>Pattern Recognition</subject><subject>Plant diseases</subject><subject>Real time</subject><subject>Signal,Image and Speech Processing</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8R5Npk7RHWfyCBUH0HNJ0utu1bdakBf33Rit68_RmhvfezDxCzgW_FJzrqyiElDnjAIwLyEqmD8hCFEqwAkR5-FtzfkxOYtxxrrTK5IKYJ7QdG9seqa926EZa45ig9QPtcdz6mvomVV3qO7QNrduINmKk01BjoM73-w7faWXd6yb4NKTtQDcBcdj6KeIpOWpsF_HsB5fk5fbmeXXP1o93D6vrNXOQlyOThSggc0KBKiqwWAqloFRapmGe6XS3y2vHtZW2QAe2KiWvIAenbAUaZLYkF7PvPvi3CeNodn4KQ1ppoEzPa11Cllgws1zwMQZszD60vQ0fRnDzFaSZgzQpSPMdpNFJlM2imMjDBsOf9T-qT2lLdYY</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xu, Yanlei</creator><creator>Chen, Qingyuan</creator><creator>Kong, Shuolin</creator><creator>Xing, Lu</creator><creator>Wang, Qi</creator><creator>Cong, Xue</creator><creator>Zhou, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7239-6556</orcidid></search><sort><creationdate>20221001</creationdate><title>Real-time object detection method of melon leaf diseases under complex background in greenhouse</title><author>Xu, Yanlei ; Chen, Qingyuan ; Kong, Shuolin ; Xing, Lu ; Wang, Qi ; Cong, Xue ; Zhou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cellular telephones</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Feature extraction</topic><topic>Greenhouses</topic><topic>Image Processing and Computer Vision</topic><topic>Inference</topic><topic>Leaves</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Research Paper</topic><topic>Pathogens</topic><topic>Pattern Recognition</topic><topic>Plant diseases</topic><topic>Real time</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yanlei</creatorcontrib><creatorcontrib>Chen, Qingyuan</creatorcontrib><creatorcontrib>Kong, Shuolin</creatorcontrib><creatorcontrib>Xing, Lu</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Cong, Xue</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yanlei</au><au>Chen, Qingyuan</au><au>Kong, Shuolin</au><au>Xing, Lu</au><au>Wang, Qi</au><au>Cong, Xue</au><au>Zhou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time object detection method of melon leaf diseases under complex background in greenhouse</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>985</spage><epage>995</epage><pages>985-995</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon (
Cucumis melon.
L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-022-01239-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7239-6556</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-8200 |
ispartof | Journal of real-time image processing, 2022-10, Vol.19 (5), p.985-995 |
issn | 1861-8200 1861-8219 |
language | eng |
recordid | cdi_proquest_journals_2918677923 |
source | SpringerLink; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Accuracy Algorithms Cellular telephones Computer Graphics Computer Science Datasets Deep learning Disease Feature extraction Greenhouses Image Processing and Computer Vision Inference Leaves Methods Multimedia Information Systems Object recognition Original Research Paper Pathogens Pattern Recognition Plant diseases Real time Signal,Image and Speech Processing |
title | Real-time object detection method of melon leaf diseases under complex background in greenhouse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20object%20detection%20method%20of%20melon%20leaf%20diseases%20under%20complex%20background%20in%20greenhouse&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Xu,%20Yanlei&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.spage=985&rft.epage=995&rft.pages=985-995&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-022-01239-7&rft_dat=%3Cproquest_cross%3E2918677923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918677923&rft_id=info:pmid/&rfr_iscdi=true |