Real-time object detection method of melon leaf diseases under complex background in greenhouse

Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the back...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2022-10, Vol.19 (5), p.985-995
Hauptverfasser: Xu, Yanlei, Chen, Qingyuan, Kong, Shuolin, Xing, Lu, Wang, Qi, Cong, Xue, Zhou, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 995
container_issue 5
container_start_page 985
container_title Journal of real-time image processing
container_volume 19
creator Xu, Yanlei
Chen, Qingyuan
Kong, Shuolin
Xing, Lu
Wang, Qi
Cong, Xue
Zhou, Yang
description Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon ( Cucumis melon. L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.
doi_str_mv 10.1007/s11554-022-01239-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2918677923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918677923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8R5Npk7RHWfyCBUH0HNJ0utu1bdakBf33Rit68_RmhvfezDxCzgW_FJzrqyiElDnjAIwLyEqmD8hCFEqwAkR5-FtzfkxOYtxxrrTK5IKYJ7QdG9seqa926EZa45ig9QPtcdz6mvomVV3qO7QNrduINmKk01BjoM73-w7faWXd6yb4NKTtQDcBcdj6KeIpOWpsF_HsB5fk5fbmeXXP1o93D6vrNXOQlyOThSggc0KBKiqwWAqloFRapmGe6XS3y2vHtZW2QAe2KiWvIAenbAUaZLYkF7PvPvi3CeNodn4KQ1ppoEzPa11Cllgws1zwMQZszD60vQ0fRnDzFaSZgzQpSPMdpNFJlM2imMjDBsOf9T-qT2lLdYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918677923</pqid></control><display><type>article</type><title>Real-time object detection method of melon leaf diseases under complex background in greenhouse</title><source>SpringerLink</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Xu, Yanlei ; Chen, Qingyuan ; Kong, Shuolin ; Xing, Lu ; Wang, Qi ; Cong, Xue ; Zhou, Yang</creator><creatorcontrib>Xu, Yanlei ; Chen, Qingyuan ; Kong, Shuolin ; Xing, Lu ; Wang, Qi ; Cong, Xue ; Zhou, Yang</creatorcontrib><description>Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon ( Cucumis melon. L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-022-01239-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Cellular telephones ; Computer Graphics ; Computer Science ; Datasets ; Deep learning ; Disease ; Feature extraction ; Greenhouses ; Image Processing and Computer Vision ; Inference ; Leaves ; Methods ; Multimedia Information Systems ; Object recognition ; Original Research Paper ; Pathogens ; Pattern Recognition ; Plant diseases ; Real time ; Signal,Image and Speech Processing</subject><ispartof>Journal of real-time image processing, 2022-10, Vol.19 (5), p.985-995</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</citedby><cites>FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</cites><orcidid>0000-0002-7239-6556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-022-01239-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918677923?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Xu, Yanlei</creatorcontrib><creatorcontrib>Chen, Qingyuan</creatorcontrib><creatorcontrib>Kong, Shuolin</creatorcontrib><creatorcontrib>Xing, Lu</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Cong, Xue</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><title>Real-time object detection method of melon leaf diseases under complex background in greenhouse</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon ( Cucumis melon. L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cellular telephones</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Disease</subject><subject>Feature extraction</subject><subject>Greenhouses</subject><subject>Image Processing and Computer Vision</subject><subject>Inference</subject><subject>Leaves</subject><subject>Methods</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Research Paper</subject><subject>Pathogens</subject><subject>Pattern Recognition</subject><subject>Plant diseases</subject><subject>Real time</subject><subject>Signal,Image and Speech Processing</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UE1LxDAQDaLguvoHPAU8R5Npk7RHWfyCBUH0HNJ0utu1bdakBf33Rit68_RmhvfezDxCzgW_FJzrqyiElDnjAIwLyEqmD8hCFEqwAkR5-FtzfkxOYtxxrrTK5IKYJ7QdG9seqa926EZa45ig9QPtcdz6mvomVV3qO7QNrduINmKk01BjoM73-w7faWXd6yb4NKTtQDcBcdj6KeIpOWpsF_HsB5fk5fbmeXXP1o93D6vrNXOQlyOThSggc0KBKiqwWAqloFRapmGe6XS3y2vHtZW2QAe2KiWvIAenbAUaZLYkF7PvPvi3CeNodn4KQ1ppoEzPa11Cllgws1zwMQZszD60vQ0fRnDzFaSZgzQpSPMdpNFJlM2imMjDBsOf9T-qT2lLdYY</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Xu, Yanlei</creator><creator>Chen, Qingyuan</creator><creator>Kong, Shuolin</creator><creator>Xing, Lu</creator><creator>Wang, Qi</creator><creator>Cong, Xue</creator><creator>Zhou, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7239-6556</orcidid></search><sort><creationdate>20221001</creationdate><title>Real-time object detection method of melon leaf diseases under complex background in greenhouse</title><author>Xu, Yanlei ; Chen, Qingyuan ; Kong, Shuolin ; Xing, Lu ; Wang, Qi ; Cong, Xue ; Zhou, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-581823c16268b2ae91662967523c437200c4dc07a5a8ec2ab950b242c6ab27253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cellular telephones</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Disease</topic><topic>Feature extraction</topic><topic>Greenhouses</topic><topic>Image Processing and Computer Vision</topic><topic>Inference</topic><topic>Leaves</topic><topic>Methods</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Research Paper</topic><topic>Pathogens</topic><topic>Pattern Recognition</topic><topic>Plant diseases</topic><topic>Real time</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yanlei</creatorcontrib><creatorcontrib>Chen, Qingyuan</creatorcontrib><creatorcontrib>Kong, Shuolin</creatorcontrib><creatorcontrib>Xing, Lu</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Cong, Xue</creatorcontrib><creatorcontrib>Zhou, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yanlei</au><au>Chen, Qingyuan</au><au>Kong, Shuolin</au><au>Xing, Lu</au><au>Wang, Qi</au><au>Cong, Xue</au><au>Zhou, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time object detection method of melon leaf diseases under complex background in greenhouse</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>5</issue><spage>985</spage><epage>995</epage><pages>985-995</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>Early disease detection in greenhouses is an important part of integrated disease management in modern agriculture. A real-time object detection method of melon leaf disease, Pruned-YOLO v5s+Shuffle (PYSS) is proposed in this research. First, for enhancing the feature extraction capability, the backbone of the YOLO v5s is reconstructed with ShuffleNet v2 Inverted Residual block. Then, to further downsize the model, the channel pruning method is used to prune and fine-tune the sparsely trained model. Finally, Pruned-YOLO v5s+Shuffle model is deployed to Jetson Nano, and the real-time performance is confirmed in melon greenhouses. The experimental results show that the proposed model has 93.2% and 98.2% mAP@0.5 for melon ( Cucumis melon. L) powdery mildew and melon real leaves, respectively. Compared with YOLO v5s, the performance of our proposed model is improved 6.2% and 6.4% in the term of mAP@0.5 and precision, respectively. The model size and inference time are reduced 85% and 7.5%. In addition, the PYSS demonstrates the higher detection precision and faster inference speed in the comparison of YOLO v3, Faster R-CNN, RetinaNet, Cascade R-CNN, YOLO v4 and YOLO v5s. Being deployed to Jetson Nano, the detection results are displayed on the monitor in real time: mAP@0.5 is 96.7%, the model size is 1.1 MB, and the inference time is 13.8 ms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-022-01239-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7239-6556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2022-10, Vol.19 (5), p.985-995
issn 1861-8200
1861-8219
language eng
recordid cdi_proquest_journals_2918677923
source SpringerLink; ProQuest Central UK/Ireland; ProQuest Central
subjects Accuracy
Algorithms
Cellular telephones
Computer Graphics
Computer Science
Datasets
Deep learning
Disease
Feature extraction
Greenhouses
Image Processing and Computer Vision
Inference
Leaves
Methods
Multimedia Information Systems
Object recognition
Original Research Paper
Pathogens
Pattern Recognition
Plant diseases
Real time
Signal,Image and Speech Processing
title Real-time object detection method of melon leaf diseases under complex background in greenhouse
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20object%20detection%20method%20of%20melon%20leaf%20diseases%20under%20complex%20background%20in%20greenhouse&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Xu,%20Yanlei&rft.date=2022-10-01&rft.volume=19&rft.issue=5&rft.spage=985&rft.epage=995&rft.pages=985-995&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-022-01239-7&rft_dat=%3Cproquest_cross%3E2918677923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918677923&rft_id=info:pmid/&rfr_iscdi=true